ﻻ يوجد ملخص باللغة العربية
We address the problem of characterizing the steerability of quantum states under restrictive measurement scenarios, i.e., the problem of determining whether a quantum state can demonstrate steering when subjected to $N$ measurements of $k$ outcomes. We consider the cases of either general positive operator-valued measures (POVMs) or specific kinds of measurements (e.g., projective or symmetric). We propose general methods to calculate lower and upper bounds for the white-noise robustness of a $d$-dimensional quantum state under different measurement scenarios that are also applicable to the study of the noise robustness of the incompatibility of sets of unknown qudit measurements. We show that some mutually unbiased bases, symmetric informationally complete measurements, and other symmetric choices of measurements are not optimal for steering isotropic states and provide candidates to the most incompatible sets of measurements in each case. Finally, we provide numerical evidence that nonprojective POVMs do not improve over projective ones for this task.
We formulate a new error-disturbance relation, which is free from explicit dependence upon variances in observables. This error-disturbance relation shows improvement over the one provided by the Branciard inequality and the Ozawa inequality for some
It has been shown in earlier works that the vertices of Platonic solids are good measurement choices for tests of EPR-steering using isotropically entangled pairs of qubits. Such measurements are regularly spaced, and measurement diversity is a good
We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measurements of the non-commuting position and momentum quadratures of the quantum oscillator. The engine extracts work by moving the harmonic trap suddenly, c
We develop a unified approach to classical, quantum and post-quantum steering. The framework is based on uncharacterised (black-box) parties performing quantum measurements on their share of a (possibly unphysical) quantum state, and its starting poi
The quantification of the measurement uncertainty aspect of Heisenbergs Uncertainty Principle---that is, the study of trade-offs between accuracy and disturbance, or between accuracies in an approximate joint measurement on two incompatible observabl