ترغب بنشر مسار تعليمي؟ اضغط هنا

The history of the dark and luminous side of Milky Way-like progenitors

81   0   0.0 ( 0 )
 نشر من قبل Luca Graziani
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we investigate the evolution of a Milky Way (MW) -like galaxy with the aim of predicting the properties of its progenitors all the way from $z sim 20$ to $z = 0$. We apply GAMESH (Graziani et al. 2015) to a high resolution N-Body simulation following the formation of a MW-type halo and we investigate its properties at $z sim 0$ and its progenitors in $0 < z < 4$. Our model predicts the observed galaxy main sequence, the mass-metallicity and the fundamental plane of metallicity relations in $0 < z < 4$. It also reproduces the stellar mass evolution of candidate MW progenitors in $0 lesssim z lesssim 2.5$, although the star formation rate and gas fraction of the simulated galaxies follow a shallower redshift dependence. We find that while the MW star formation and chemical enrichment are dominated by the contribution of galaxies hosted in Lyman $alpha$-cooling halos, at z > 6 the contribution of star forming mini-halos is comparable to the star formation rate along the MW merger tree. These systems might then provide an important contribution in the early phases of reionization. A large number of mini-halos with old stellar populations, possibly Population~III stars, are dragged into the MW or survive in the Local Group. At low redshift dynamical effects, such as halo mergers, tidal stripping and halo disruption redistribute the baryonic properties among halo families. These results are critically discussed in light of future improvements including a more sophisticated treatment of radiative feedback and inhomogeneous metal enrichment.



قيم البحث

اقرأ أيضاً

The observed population of the Milky Way satellite galaxies offer a unique testing ground for galaxy formation theory on small-scales. Our novel approach was to investigate the clustering of the known Milky Way satellite galaxies and to quantify the amount of substructure within their distribution using a two-point correlation function statistic in each of three spaces: configuration space, line-of-sight velocity space, and four-dimensional phase-space. These results were compared to those for three sets of subhaloes in the Via Lactea II Cold Dark Matter simulation defined to represent the luminous dwarfs. We found no evidence at a significance level above 2-sigma of substructure within the distribution of the Milky Way satellite galaxies in any of the three spaces. The luminous subhalo sets are more strongly clustered than are the Milky Way satellites in all three spaces and over a broader range of scales in four-dimensional phase-space. Each of the luminous subhalo sets are clustered as a result of substructure within their line-of-sight velocity space distributions at greater than 3-sigma significance, whereas the Milky Way satellite galaxies are randomly distributed in line-of-sight velocity space. While our comparison is with only one Cold Dark Matter simulation, the inconsistencies between the Milky Way satellite galaxies and the Via Lactea II subhalo sets for all clustering methods suggest a potential new small-scale tension between Cold Dark Matter theory and the observed Milky Way satellites. Future work will obtain a more robust comparison between the observed Milky Way satellites and Cold Dark Matter theory by studying additional simulations.
We investigate the metallicity distribution function (MDF) in the Galactic halo and the relative fraction of Carbon-normal and Carbon-rich stars. To this aim, we use an improved version of the semi-analytical code GAlaxy MErger Tree and Evolution (GA METE), that reconstructs the hierarchical merger tree of the MW, following the star formation history and the metal and dust evolution in individual progenitors. The predicted scaling relations between the dust, metal and gas masses for MW progenitors show a good agreement with observational data of local galaxies and of Gamma Ray Burst (GRB) host galaxies at 0.1 < z < 6.3. We find that in order to reproduce the observed tail of the MDF at [Fe/H] < -4, faint SN explosions have to dominate the metal yields produced by Pop III stars, disfavoring a Pop III IMF that extends to stellar masses > 140 M_{sun}, into the Pair-Instability SN progenitor mass range. The relative contribution of C-normal and C-enhanced stars to the MDF and its dependence on [Fe/H] points to a scenario where the Pop III/II transition is driven by dust-cooling and the first low-mass stars form when the dust-to-gas ratio in their parent clouds exceeds a critical value of D_crit = 4.4 x 10^{-9}.
112 - Shi Shao 2020
We analyse systems analogous to the Milky Way (MW) in the EAGLE cosmological hydrodynamics simulation in order to deduce the likely structure of the MWs dark matter halo. We identify MW-mass haloes in the simulation whose satellite galaxies have simi lar kinematics and spatial distribution to those of the bright satellites of the MW, specifically systems in which the majority of the satellites (8 out of 11) have nearly co-planar orbits that are also perpendicular to the central stellar disc. We find that the normal to the common orbital plane of the co-planar satellites is well aligned with the minor axis of the host dark matter halo, with a median misalignment angle of only $17.3^circ$. Based on this result, we infer that the minor axis of the Galactic dark matter halo points towards $(l,b)=(182^circ,-2^circ)$, with an angular uncertainty at the 68 and 95 percentile confidence levels of 22$^circ$ and 43$^circ$ respectively. Thus, the inferred minor axis of the MW halo lies in the plane of the stellar disc. The halo, however, is not homologous and its flattening and orientation vary with radius. The inner parts of the halo are rounder than the outer parts and well-aligned with the stellar disc (that is the minor axis of the halo is perpendicular to the disc). Further out, the halo twists and the minor axis changes direction by $90^circ$. This twist occurs over a very narrow radial range and reflects variations in the filamentary network along which mass was accreted into the MW.
167 - X. H. Sun , W. Reich 2012
(Abridged) We study the polarisation properties, magnetic field strength, and synchrotron emission scale-height of Milky-Way-like galaxies in comparison with other spiral galaxies. We use our 3D-emission model of the Milky Way Galaxy for viewing the Milky Way from outside at various inclinations as spiral galaxies are observed. When seen edge-on the synchrotron emission from the Milky Way has an exponential scale-height of about 0.74 kpc, which is much smaller than the values obtained from previous models. We find that current analysis methods overestimate the scale-height of synchrotron emission of galaxies by about 10% at an inclination of 80 degree and about 40% at an inclination of 70 degree because of contamination from the disk. The observed RMs for face-on galaxies derived from high-frequency polarisation measurements approximate to the Faraday depths (FDs) when scaled by a factor of two. For edge-on galaxies, the observed RMs are indicative of the orientation of the large-scale magnetic field, but are not well related with the FDs. Assuming energy equipartition between the magnetic field and particles for the Milky Way results in an average magnetic-field strength, which is about two times larger than the intrinsic value for a K factor of 100. The number distribution of the integrated polarisation percentages of a large sample of unresolved Milky-Way-like galaxies peaks at about 4.2% at 4.8 GHz and at about 0.8% at 1.4GHz. Integrated polarisation angles rotated by 90 degree align very well with the position angles of the major axes, implying that unresolved galaxies do not have intrinsic RMs.
138 - Constance Rockosi 2009
The history of the Milky Way is encoded in the spatial distributions, kinematics, and chemical enrichment patterns of its resolved stellar populations. SEGUE-2 and APOGEE, two of the four surveys that comprise SDSS-III (the Sloan Digital Sky Survey I II), will map these distributions and enrichment patterns at optical and infrared wavelengths, respectively. Using the existing SDSS spectrographs, SEGUE-2 will obtain spectra of 140,000 stars in selected high-latitude fields to a magnitude limit r ~ 19.5, more than doubling the sample of distant halo stars observed in the SDSS-II survey SEGUE (the Sloan Extension for Galactic Understanding and Exploration). With spectral resolution R ~ 2000 and typical S/N per pixel of 20-25, SEGUE and SEGUE-2 measure radial velocities with typical precision of 5-10 km/s and metallicities ([Fe/H]) with a typical external error of 0.25 dex. APOGEE (the Apache Point Observatory Galactic Evolution Experiment) will use a new, 300-fiber H-band spectrograph (1.5-1.7 micron) to obtain high-resolution (R ~ 24,000), high signal-to-noise ratio (S/N ~ 100 per pixel) spectra of 100,000 red giant stars to a magnitude limit H ~ 12.5. Infrared spectroscopy penetrates the dust that obscures the inner Galaxy from our view, allowing APOGEE to carry out the first large, homogeneous spectroscopic survey of all Galactic stellar populations. APOGEE spectra will allow radial velocity measurements with < 0.5 km/s precision and abundance determinations (with ~ 0.1 dex precision) of 15 chemical elements for each program star, which can be used to reconstruct the history of star formation that produced these elements. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا