ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the outskirts of galaxies in a cosmological context

95   0   0.0 ( 0 )
 نشر من قبل Andrew Cooper
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andrew P. Cooper




اسأل ChatGPT حول البحث

Current data broadly support trends of galaxy surface brightness profile amplitude and shape with total stellar mass predicted by state-of-the-art Lambda-CDM cosmological simulations, although recent results show signs of interesting discrepancies, particularly for galaxies less massive than the Milky Way. Here I discuss how perhaps the largest contribution to such discrepancies can be inferred almost directly from how well a given model agrees with the observed present-day galaxy stellar mass function.



قيم البحث

اقرأ أيضاً

76 - E. Athanassoula 2016
I review briefly some dynamical models of structures in the outer parts of disc galaxies, including models of polar rings, tidal tails and bridges. I then discuss the density distribution in the outer parts of discs. For this, I compare observations to results of a model in which the disc galaxy is in fact the remnant of a major merger, and find good agreement. This comparison includes radial profiles of the projected surface density and of stellar age, as well as time evolution of the break radius and of the inner and outer disc scale lengths. I also compare the radial projected surface density profiles of dynamically motivated mono-age populations and find that, compared to older populations, younger ones have flatter density profiles in the inner region and steeper in the outer one. The break radius, however, does not vary with stellar age, again in good agreement with observations.
108 - A. Bosma 2016
The HI in disk galaxies frequently extends beyond the optical image, and can trace the dark matter there. I briefly highlight the history of high spatial resolution HI imaging, the contribution it made to the dark matter problem, and the current tens ion between several dynamical methods to break the disk-halo degeneracy. I then turn to the flaring problem, which could in principle probe the shape of the dark halo. Instead, however, a lot of attention is now devoted to understanding the role of gas accretion via galactic fountains. The current $rm Lambda$ cold dark matter theory has problems on galactic scales, such as the core-cusp problem, which can be addressed with HI observations of dwarf galaxies. For a similar range in rotation velocities, galaxies of type Sd have thin disks, while those of type Im are much thicker. After a few comments on modified Newtonian dynamics and on irregular galaxies, I close with statistics on the HI extent of galaxies.
The outskirts of galaxies offer extreme environments where we can test our understanding of the formation, evolution, and destruction of molecules and their relationship with star formation and galaxy evolution. We review the basic equations that are used in normal environments to estimate physical parameters like the molecular gas mass from CO line emission and dust continuum emission. Then we discuss how those estimates may be affected when applied to the outskirts, where the average gas density, metallicity, stellar radiation field, and temperature may be lower. We focus on observations of molecular gas in the outskirts of the Milky Way, extragalactic disk galaxies, early-type galaxies, groups, and clusters. The scientific results show the versatility of molecular gas, as it has been used to trace Milky Way spiral arms out to a galactocentric radius of 15 kpc, to study star formation in extended ultraviolet disk galaxies, to probe galaxy interactions in polar ring S0 galaxies, and to investigate ram pressure stripping in clusters. We highlight the physical stimuli that accelerate the formation of molecular gas, including internal processes such as spiral arm compression and external processes such as interactions.
69 - Tobias Buck 2019
We investigate the impact of cosmic rays (CR) and different modes of CR transport on the properties of Milky Way-mass galaxies in cosmological magneto-hydrodynamical simulations in the context of the AURIGA project. We systematically study how advect ion, anisotropic diffusion and additional Alfven-wave cooling affect the galactic disc and the circum-galactic medium (CGM). Global properties such as stellar mass and star formation rate vary little between simulations with and without various CR transport physics, whereas structural properties such as disc sizes, CGM densities or temperatures can be strongly affected. In our simulations, CRs affect the accretion of gas onto galaxies by modifying the CGM flow structure. This alters the angular momentum distribution which manifests itself as a difference in stellar and gaseous disc size. The strength of this effect depends on the CR transport model: CR advection results in the most compact discs while the Alfven-wave model resembles more the AURIGA model. The advection and diffusion models exhibit large ($rsim50$ kpc) CR pressure-dominated gas haloes causing a smoother and partly cooler CGM. The additional CR pressure smoothes small-scale density peaks and compensates for the missing thermal pressure support at lower CGM temperatures. In contrast, the Alfven-wave model is only CR pressure dominated at the disc-halo interface and only in this model the gamma-ray emission from hadronic interactions agrees with observations. In contrast to previous findings, we conclude that details of CR transport are critical for accurately predicting the impact of CR feedback on galaxy formation.
58 - Hsiao-Wen Chen 2016
QSO absorption spectroscopy provides a sensitive probe of both the neutral medium and diffuse ionized gas in the distant Universe. It extends 21cm maps of gaseous structures around low-redshift galaxies both to lower gas column densities and to highe r redshifts. Combining galaxy surveys with absorption-line observations of gas around galaxies enables comprehensive studies of baryon cycles in galaxy outskirts over cosmic time. This Chapter presents a review of the empirical understanding of the cosmic neutral gas reservoir from studies of damped Lya absorbers (DLAs). It describes the constraints on the star formation relation and chemical enrichment history in the outskirts of distant galaxies from DLA studies. A brief discussion of available constraints on the ionized circumgalactic gas from studies of lower column density Lya absorbers and associated ionic absorption transitions is presented at the end.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا