ترغب بنشر مسار تعليمي؟ اضغط هنا

A Complex Solar Coronal Jet with Two Phases

109   0   0.0 ( 0 )
 نشر من قبل Jie Chen
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Jets often occur repeatedly from almost the same location. In this paper, a complex solar jet was observed with two phases to the west of NOAA AR 11513 on July 2nd, 2012. If it had been observed at only moderate resolution, the two phases and their points of origin would have been regarded as identical. However, at high resolution we find the two phases merge into one another and the accompanying footpoint brightenings occur at different locations. The phases originate from different magnetic patches rather than being one phase originating from the same patch. Photospheric line of sight (LOS) magnetograms show that the bases of the two phases lie in two different patches of magnetic flux which decrease in size during the occurrence of the two phases. Based on these observations, we suggest the driving mechanism of the two successive phases is magnetic cancellation of two separate magnetic fragments with an opposite polarity fragment between them.



قيم البحث

اقرأ أيضاً

Jets are defined as impulsive, well-collimated upflows, occurring in different layers of the solar atmosphere with different scales. Their relationship with coronal mass ejections (CMEs), another type of solar impulsive events, remains elusive. Using the high-quality imaging data of AIA/SDO, here we show a well-observed coronal jet event, in which part of the jets, with the embedding coronal loops, runs into a nearby coronal hole (CH) and gets bounced towards the opposite direction. This is evidenced by the flat-shape of the jet front during its interaction with the CH and the V-shaped feature in the time-slice plot of the interaction region. About a half-hour later, a CME initially with a narrow and jet-like front is observed by the LASCO C2 coronagraph, propagating along the direction of the post-collision jet. We also observe some 304 A dark material flowing from the jet-CH interaction region towards the CME. We thus suggest that the jet and the CME are physically connected, with the jet-CH collision and the large- scale magnetic topology of the CH being important to define the eventual propagating direction of this particular jet-CME eruption.
A small blowout jet was observed at the boundary of the south polar coronal hole on 2011 February 8 at around 21:00 UT. Images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO) revealed an expanding loop rising from one footpoint of a compact, bipolar bright point. Magnetograms from the Helioseismic Magnetic Imager (HMI) on board SDO showed that the jet was triggered by the cancelation of a parasitic positive polarity feature near the negative pole of the bright point. The jet emission was present for 25 mins and it extended 30 Mm from the bright point. Spectra from the EUV Imaging Spectrometer on board Hinode yielded a temperature and density of 1.6 MK and 0.9-1.7 x 10^8 cm^-3 for the ejected plasma. Line-of-sight velocities reached up to 250 km/s and were found to increase with height, suggesting plasma acceleration within the body of the jet. Evidence was found for twisting motions within the jet based on variations of the LOS velocities across the jet width. The derived angular speed was in the range 9-12 x 10^-3 rad s^-1, consistent with previous measurements from jets. The density of the bright point was 7.6 x 10^8 cm^-3, and the peak of the bright points emission measure occurred at 1.3 MK, with no plasma above 3 MK.
We investigate triggering, activation, and ejection of a solar eruptive prominence that occurred in a multi-polar flux system of active region NOAA 11548 on 2012 August 18 by analyzing data from AIA on board SDO, RHESSI, and EUVI/SECCHI on board STER EO. Prior to the prominence activation, we observed striking coronal activities in the form of a blowout jet which is associated with rapid eruption of a cool flux rope. Further, the jet-associated flux rope eruption underwent splitting and rotation during its outward expansion. These coronal activities are followed by the prominence activation during which it slowly rises with a speed of ~12 km/s while the region below the prominence emits gradually varying EUV and thermal X-ray emissions. From these observations, we propose that the prominence eruption is a complex, multi-step phenomenon in which a combination of internal (tether-cutting reconnection) and external (i.e., pre-eruption coronal activities) processes are involved. The prominence underwent catastrophic loss of equilibrium with the onset of the impulsive phase of an M1.8 flare suggesting large-scale energy release by coronal magnetic reconnection. We obtained signatures of particle acceleration in the form of power law spectra with hard electron spectral index (delta ~ 3) and strong HXR footpoint sources. During the impulsive phase, a hot EUV plasmoid was observed below the apex of the erupting prominence that ejected in the direction of the prominence with a speed of ~177 km/s. The temporal, spatial and kinematic correlations between the erupting prominence and the plasmoid imply that the magnetic reconnection supported the fast ejection of prominence in the lower corona.
468 - Peter Young , Karin Muglach 2013
A blowout jet occurred within the south coronal hole on 9 February 2011 at 09:00 UT and was observed by the Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory, and the EUV Imaging Spec trometer (EIS) and X-Ray Telescope (XRT) onboard the Hinode spacecraft during coronal hole monitoring performed as part of Hinode Operations Program No. 177. Images from AIA show expanding hot and cold loops from a small bright point with plasma ejected in a curtain up to 30 Mm wide. The initial intensity front of the jet had a projected velocity of 200 km/s and line-of-sight (LOS) velocities measured by EIS are between 100 and 250 km/s. The LOS velocities increased along the jet, implying an acceleration mechanism operating within the body of the jet. The jet plasma had a density of 2.7 x 10^8 cm^-3, and a temperature of 1.4 MK. During the event a number of bright kernels were seen at the base of the bright point. The kernels have sizes of about 1000 km, are variable in brightness, and have lifetimes of 1-15 minutes. An XRT filter ratio yields temperatures of 1.5-3.0 MK for the kernels. The bright point existed for at least ten hours, but disappeared within two hours after the jet, which lasted for 30 minutes. HMI data reveal converging photospheric flows at the location of the bright point, and the mixed polarity magnetic flux canceled over a period of four hours on either side of the jet.
A broad jet was observed in a weak magnetic field area at the edge of active region NOAA 11106. The peculiar shape and magnetic environment of the broad jet raised the question of whether it was created by the same physical processes of previously st udied jets with reconnection occurring high in the corona. We carried out a multi-wavelength analysis using the EUV images from the Atmospheric Imaging Assembly (AIA) and magnetic fields from the Helioseismic and Magnetic Imager (HMI) both on-board the SDO satellite. The jet consisted of many different threads that expanded in around 10 minutes to about 100 Mm in length, with the bright features in later threads moving faster than in the early ones, reaching a maximum speed of about 200 km s^{-1}. Time-slice analysis revealed a striped pattern of dark and bright strands propagating along the jet, along with apparent damped oscillations across the jet. This is suggestive of a (un)twisting motion in the jet, possibly an Alfven wave. A topological analysis of an extrapolated field was performed. Bald patches in field lines, low-altitude flux ropes, diverging flow patterns, and a null point were identified at the basis of the jet. Unlike classical lambda or Eiffel-tower shaped jets that appear to be caused by reconnection in current sheets containing null points, reconnection in regions containing bald patches seems to be crucial in triggering the present jet. There is no observational evidence that the flux ropes detected in the topological analysis were actually being ejected themselves, as occurs in the violent phase of blowout jets; instead, the jet itself may have gained the twist of the flux rope(s) through reconnection. This event may represent a class of jets different from the classical quiescent or blowout jets, but to reach that conclusion, more observational and theoretical work is necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا