ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of dynamic-demand-control appliances on the power grid frequency

86   0   0.0 ( 0 )
 نشر من قبل Eder Batista Tchawou Tchuisseu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Power grid frequency control is a demanding task requiring expensive idle power plants to adapt the supply to the fluctuating demand. An alternative approach is controlling the demand side in such a way that certain appliances modify their operation to adapt to the power availability. This is specially important to achieve a high penetration of renewable energy sources. A number of methods to manage the demand side have been proposed. In this work we focus on dynamic demand control (DDC), where smart appliances can delay their switchings depending on the frequency of the system. We introduce a simple model to study the effects of DDC on the frequency of the power grid. The model includes the power plant equations, a stochastic model for the demand that reproduces, adjusting a single parameter, the statistical properties of frequency fluctuations measured experimentally, and a generic DDC protocol. We find that DDC can reduce small and medium size fluctuations but it can also increase the probability of observing large frequency peaks due to the necessity of recovering pending task. We also conclude that a deployment of DDC around 30-40% already allows a significant reduction of the fluctuations while keeping the number of pending tasks low.



قيم البحث

اقرأ أيضاً

In this paper, we show that spatial correlation of renewable energy outputs greatly influences the robustness of power grids. First, we propose a new index for the spatial correlation among renewable energy outputs. We find that the spatial correlati on of renewable energy outputs in a short time-scale is as weak as that caused by independent random variables and that in a long time-scale is as strong as that under perfect synchronization. Then, by employing the topology of the power grid in eastern Japan, we analyze the robustness of the power grid with spatial correlation of renewable energy outputs. The analysis is performed by using a realistic differential-algebraic equations model and the result shows that the spatial correlation of the energy resources strongly degrades the robustness of the power grid. Our result suggests that the spatial correlation of the renewable energy outputs should be taken into account when estimating the stability of power grids.
Power-grid systems constitute one of the most complex man-made spatially extended structures. These operate with strict operational bounds to ensure synchrony across the grid. This is particularly relevant for power-grid frequency, which operates str ictly at $50,$Hz ($60,$Hz). Nevertheless, small fluctuations around the mean frequency are present at very short time scales $<2$ seconds and can exhibit highly complex spatio-temporal behaviour. Here we apply superstatistical data analysis techniques to measured frequency fluctuations in the Nordic Grid. We study the increment statistics and extract the relevant time scales and superstatistical distribution functions from the data. We show that different synchronous recordings of power-grid frequency have very distinct stochastic fluctuations with different types of superstatistics at different spatial locations, and with transitions from one superstatistics to another when the time lag of the increment statistics is changed.
Monitoring and modelling the power grid frequency is key to ensuring stability in the electrical power system. Many tools exist to investigate the detailed deterministic dynamics and especially the bulk behaviour of the frequency. However, far less a ttention has been paid to its stochastic properties, and there is a need for a cohesive framework that couples both short-time scale fluctuations and bulk behaviour. Moreover, commonly assumed uncorrelated stochastic noise is predominantly employed in modelling in energy systems. In this publication, we examine the stochastic properties of six synchronous power-grid frequency recording with high-temporal resolution of the Nordic Grid from September 2013, focusing on the increments of the frequency recordings. We show that these increments follow non-Gaussian statistics and display spatial and temporal correlations. Furthermore, we report two different physical synchronisation phenomena: a very short timescale phase synchronisation ($<2,$s) followed by a slightly larger timescale amplitude synchronisation ($2,$s-$5,$s). Overall, these results provide guidance on how to model fluctuations in power systems.
We report on the existing connection between power-law distributions and allometries. As it was first reported in [PLoS ONE 7, e40393 (2012)] for the relationship between homicides and population, when these urban indicators present asymptotic power- law distributions, they can also display specific allometries among themselves. Here, we present an extensive characterization of this connection when considering all possible pairs of relationships from twelve urban indicators of Brazilian cities (such as child labor, illiteracy, income, sanitation and unemployment). Our analysis reveals that all our urban indicators are asymptotically distributed as power laws and that the proposed connection also holds for our data when the allometric relationship displays enough correlations. We have also found that not all allometric relationships are independent and that they can be understood as a consequence of the allometric relationship between the urban indicator and the population size. We further show that the residuals fluctuations surrounding the allometries are characterized by an almost constant variance and log-normal distributions.
Frequency fluctuations in power grids, caused by unpredictable renewable energy sources, consumer behavior and trading, need to be balanced to ensure stable grid operation. Standard smart grid solutions to mitigate large frequency excursions are base d on centrally collecting data and give rise to security and privacy concerns. Furthermore, control of fluctuations is often tested by employing Gaussian perturbations. Here, we demonstrate that power grid frequency fluctuations are in general non-Gaussian, implying that large excursions are more likely than expected based on Gaussian modeling. We consider real power grid frequency measurements from Continental Europe and compare them to stochastic models and predictions based on Fokker-Planck equations. Furthermore, we review a decentral smart grid control scheme to limit these fluctuations. In particular, we derive a scaling law of how decentralized control actions reduce the magnitude of frequency fluctuations and demonstrate the power of these theoretical predictions using a test grid. Overall, we find that decentral smart grid control may reduce grid frequency excursions due to both Gaussian and non-Gaussian power fluctuations and thus offers an alternative pathway for mitigating fluctuation-induced risks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا