ﻻ يوجد ملخص باللغة العربية
Silicon-vacancy color centers in nanodiamonds are promising as fluorescent labels for biological applications, with a narrow, non-bleaching emission line at 738,nm. Two-photon excitation of this fluorescence offers the possibility of low-background detection at significant tissue depth with high three-dimensional spatial resolution. We have measured the two-photon fluorescence cross section of a negatively-charged silicon vacancy (SiV$^-$) in ion-implanted bulk diamond to be $0.74(19) times 10^{-50}{rm cm^4;s/photon}$ at an excitation wavelength of 1040,nm. In comparison to the diamond nitrogen vacancy (NV) center, the expected detection threshold of a two-photon excited SiV center is more than an order of magnitude lower, largely due to its much narrower linewidth. We also present measurements of two- and three-photon excitation spectra, finding an increase in the two-photon cross section with decreasing wavelength, and discuss the physical interpretation of the spectra in the context of existing models of the SiV energy-level structure.
The photoluminescence of nitrogen-vacancy (NV) centers in diamond nanoparticles exhibits specific properties as compared to NV centers in bulk diamond. For instance large fluctuations of lifetime and brightness from particle to particle have been rep
Single crystal diamond membranes that host optically active emitters are highly attractive components for integrated quantum nanophotonics. In this work we demonstrate bottom-up synthesis of single crystal diamond membranes containing the germanium v
The spatial resolution and fluorescence signal amplitude in stimulated emission depletion (STED) microscopy is limited by the photostability of available fluorophores. Here, we show that negatively-charged silicon vacancy (SiV) centers in diamond are
We characterize a high-density sample of negatively charged silicon-vacancy (SiV$^-$) centers in diamond using collinear optical multidimensional coherent spectroscopy. By comparing the results of complementary signal detection schemes, we identify a
We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV$^-$) color centers in diamond as quantum emitters. Hybrid SiC/diamond structures are realized by