ﻻ يوجد ملخص باللغة العربية
Let $Y$ be a complex projective variety of dimension $n$ with isolated singularities, $pi:Xto Y$ a resolution of singularities, $G:=pi^{-1}{rm{Sing}}(Y)$ the exceptional locus. From Decomposition Theorem one knows that the map $H^{k-1}(G)to H^k(Y,Ybackslash {rm{Sing}}(Y))$ vanishes for $k>n$. Assuming this vanishing, we give a short proof of Decomposition Theorem for $pi$. A consequence is a short proof of the Decomposition Theorem for $pi$ in all cases where one can prove the vanishing directly. This happens when either $Y$ is a normal surface, or when $pi$ is the blowing-up of $Y$ along ${rm{Sing}}(Y)$ with smooth and connected fibres, or when $pi$ admits a natural Gysin morphism. We prove that this last condition is equivalent to say that the map $H^{k-1}(G)to H^k(Y,Ybackslash {rm{Sing}}(Y))$ vanishes for any $k$, and that the pull-back $pi^*_k:H^k(Y)to H^k(X)$ is injective. This provides a relationship between Decomposition Theorem and Bivariant Theory.
Let $Y$ be a complex projective variety of dimension $n$ with isolated singularities, $pi:Xto Y$ a resolution of singularities, $G:=pi^{-1}left(rm{Sing}(Y)right)$ the exceptional locus. From the Decomposition Theorem one knows that the map $H^{k-1}(G
The decomposition of a two dimensional complex germ with non-isolated singularity into semi-algebraic sets is given. This decomposition consists of four classes: Riemannian cones defined over a Seifert fibered manifold, a topological cone over thicke
Let $X$ be a complex, irreducible, quasi-projective variety, and $pi:widetilde Xto X$ a resolution of singularities of $X$. Assume that the singular locus ${text{Sing}}(X)$ of $X$ is smooth, that the induced map $pi^{-1}({text{Sing}}(X))to {text{Sing
We study foliations $mathcal{F}$ on Hirzebruch surfaces $S_delta$ and prove that, similarly to those on the projective plane, any $mathcal{F}$ can be represented by a bi-homogeneous polynomial affine $1$-form. In case $mathcal{F}$ has isolated singul
By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety $Y$. In the present paper we prove the same result in case $Y$ has isolated singularities.