ﻻ يوجد ملخص باللغة العربية
When reactive fluids flow through a dissolving porous medium, conductive channels form, leading to fluid breakthrough. This phenomenon is important in geologic carbon storage, where the dissolution of CO2 in water increases the acidity and produce microstructures significantly different from those in an intact reservoir. We demonstrate the controlling mechanism for the dissolution patterns in natural porous materials. This was done using numerical simulations based on high resolution digital models of North Sea chalk. We tested three model scenarios, and found that aqueous CO2 dissolve porous media homogeneously, leading to large breakthrough porosity. In contrast, CO2-free solution develops elongated convective channels in porous media, known as wormholes, and resulting in small breakthrough porosity. We further show that a homogeneous dissolution pattern appears because the sample size is smaller than the theoretical size of a developing wormhole. The result indicates that the presence of dissolved CO2 expands the reactive subvolume of a porous medium, and thus enhances the geochemical alteration of reservoir structures and might undermine the sealing integrity of caprocks when minerals dissolve.
The dissolution of porous materials in a flow field shapes the morphologies of many geologic landscapes. Identifying the dissolution front, the interface between the reactive and the unreactive regions in a dissolving medium, is a prerequisite for st
Reactive infiltration instability (RII) drives the development of many natural and engineered flow systems. These are encountered e.g. in hydraulic fracturing, geologic carbon storage and well stimulation in enhanced oil recovery. The surface area of
The tendency of irreversible processes to generate entropy is the ultimate driving force for the evolution of nature. In engineering, entropy production is often used as a measure of usable energy losses. In this study we show that the analysis of th
A reactive fluid dissolving the surrounding rock matrix can trigger an instability in the dissolution front, leading to spontaneous formation of pronounced channels or wormholes. Theoretical investigations of this instability have typically focused o
The dissolution of porous media in a geologic formation induced by the injection of massive amounts of CO2 can undermine the mechanical stability of the formation structure before carbon mineralization takes place. The geomechanical impact of geologi