ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining Dark Energy Dynamics in Extended Parameter Space

67   0   0.0 ( 0 )
 نشر من قبل Eleonora Di Valentino
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dynamical dark energy has been recently suggested as a promising and physical way to solve the 3.4 sigma tension on the value of the Hubble constant $H_0$ between the direct measurement of Riess et al. (2016) (R16, hereafter) and the indirect constraint from Cosmic Microwave Anisotropies obtained by the Planck satellite under the assumption of a $Lambda$CDM model. In this paper, by parameterizing dark energy evolution using the $w_0$-$w_a$ approach, and considering a $12$ parameter extended scenario, we find that: a) the tension on the Hubble constant can indeed be solved with dynamical dark energy, b) a cosmological constant is ruled out at more than $95 %$ c.l. by the Planck+R16 dataset, and c) all of the standard quintessence and half of the downward going dark energy model space (characterized by an equation of state that decreases with time) is also excluded at more than $95 %$ c.l. These results are further confirmed when cosmic shear, CMB lensing, or SN~Ia luminosity distance data are also included. However, tension remains with the BAO dataset. A cosmological constant and small portion of the freezing quintessence models are still in agreement with the Planck+R16+BAO dataset at between 68% and 95% c.l. Conversely, for Planck plus a phenomenological $H_0$ prior, both thawing and freezing quintessence models prefer a Hubble constant of less than 70 km/s/Mpc. The general conclusions hold also when considering models with non-zero spatial curvature.



قيم البحث

اقرأ أيضاً

161 - V. C. Busti , R. C. Santos 2011
In this Comment we discuss a recent analysis by Yu et al. [RAA 11, 125 (2011)] about constraints on the smoothness $alpha$ parameter and dark energy models using observational $H(z)$ data. It is argued here that their procedure is conceptually incons istent with the basic assumptions underlying the adopted Dyer-Roeder approach. In order to properly quantify the influence of the $H(z)$ data on the smoothness $alpha$ parameter, a $chi^2$-test involving a sample of SNe Ia and $H(z)$ data in the context of a flat $Lambda$CDM model is reanalyzed. This result is confronted with an earlier approach discussed by Santos et al. (2008) without $H(z)$ data. In the ($Omega_m, alpha$) plane, it is found that such parameters are now restricted on the intervals $0.66 leq alpha leq 1.0$ and $0.27 leq Omega_m leq 0.37$ within 95.4% confidence level (2$sigma$), and, therefore, fully compatible with the homogeneous case. The basic conclusion is that a joint analysis involving $H(z)$ data can indirectly improve our knowledge about the influence of the inhomogeneities. However, this happens only because the $H(z)$ data provide tighter constraints on the matter density parameter $Omega_m$.
The existence of inhomogeneities in the observed Universe modifies the distance-redshift relations thereby affecting the results of cosmological tests in comparison to the ones derived assuming spatially uniform models. By modeling the inhomogeneitie s through a Zeldovich-Kantowski-Dyer-Roeder (ZKDR) approach which is phenomenologically characterized by a smoothness parameter $alpha$, we rediscuss the constraints on the cosmic parameters based on Supernovae type Ia and Gamma-Ray Bursts (GRBs) data. The present analysis is restricted to a flat $Lambda$CDM model with the reasonable assumption that $Lambda$ does not clump. A $chi^{2}$-analysis using 557 SNe Ia data from the Union2 Compilation Data (Amanullah {it et al.} 2010) constrains the pair of parameters ($Omega_m, alpha$) to $Omega_m=0.27_{-0.03}^{+0.08}$($2sigma$) and $alpha geq 0.25$. A similar analysis based only on 59 Hymnium GRBs (Wei 2010) constrains the matter density parameter to be $Omega_m= 0.35^{+0.62}_{-0.24}$ ($2sigma$) while all values for the smoothness parameter are allowed. By performing a joint analysis, it is found that $Omega_m = 0.27^{+0.06}_{-0.03}$ and $alpha geq 0.52$. As a general result, although considering that current GRB data alone cannot constrain the smoothness $alpha$ parameter our analysis provides an interesting cosmological probe for dark energy even in the presence of inhomogeneities.
The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the de nsity, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few percent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical collapse dynamics is made available online so as to provide straightforward means of testing the effect of alternative dark energy models and initial power-spectra on the low-redshift matter distribution.
The presence of inhomogeneities modifies the cosmic distances through the gravitational lensing effect, and, indirectly, must affect the main cosmological tests. Assuming that the dark energy is a smooth component, the simplest way to account for the influence of clustering is to suppose that the average evolution of the expanding Universe is governed by the total matter-energy density whereas the focusing of light is only affected by a fraction of the total matter density quantified by the $alpha$ Dyer-Roeder parameter. By using two different samples of SNe type Ia data, the $Omega_m$ and $alpha$ parameters are constrained by applying the Zeldovich-Kantowski-Dyer-Roeder (ZKDR) luminosity distance redshift relation for a flat ($Lambda$CDM) model. A $chi^{2}$-analysis using the 115 SNe Ia data of Astier {it et al.} sample (2006) constrains the density parameter to be $Omega_m=0.26_{-0.07}^{+0.17}$($2sigma$) while the $alpha$ parameter is weakly limited (all the values $in [0,1]$ are allowed even at 1$sigma$). However, a similar analysis based the 182 SNe Ia data of Riess {it et al.} (2007) constrains the pair of parameters to be $Omega_m= 0.33^{+0.09}_{-0.07}$ and $alphageq 0.42$ ($2sigma$). Basically, this occurs because the Riess {it et al.} sample extends to appreciably higher redshifts. As a general result, even considering the existence of inhomogeneities as described by the smoothness $alpha$ parameter, the Einstein-de Sitter model is ruled out by the two samples with a high degree of statistical confidence ($11.5sigma$ and $9.9sigma$, respectively). The inhomogeneous Hubble-Sandage diagram discussed here highlight the necessity of the dark energy, and a transition deceleration/accelerating phase at $zsim 0.5$ is also required.
228 - Fuyu Dong , Jun Zhang , Yu Yu 2018
Low density regions are less affected by the nonlinear structure formation and baryonic physics. They are ideal places for probing the nature of dark energy, a possible explanation for the cosmic acceleration. Unlike void lensing, which requires iden tifications of individual voids, we study the stacked lensing signals around the low-density-positions (LDP), defined as places that are devoid of foreground bright galaxies in projection. The method allows a direct comparison with numerical results by drawing correspondence between the bright galaxies with halos. It leads to lensing signals that are significant enough for differentiating several dark energy models. In this work, we use the CFHTLenS catalogue to define LDPs, as well as measuring their background lensing signals. We consider several different definitions of the foreground bright galaxies (redshift range & magnitude cut). Regarding the cosmological model, we run six simulations: the first set of simulations have the same initial conditions, with $rm{w_{de}=-1,-0.5,-0.8,-1.2}$; the second set of simulations include a slightly different $Lambda$CDM model and a w(z) model from cite{2017NatAs...1..627Z}. The lensing results indicate that the models with $rm{w_{de}=-0.5,-0.8}$ are not favored, and the other four models all achieve comparable agreement with the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا