ﻻ يوجد ملخص باللغة العربية
One of the key goals of observing neutron stars is to infer the equation of state (EoS) of the cold, ultradense matter in their interiors. We present here a Bayesian statistical method of inferring the pressures at five fixed densities, from a sample of mock neutron star masses and radii. We show that while five polytropic segments are needed for maximum flexibility in the absence of any prior knowledge of the EoS, regularizers are also necessary to ensure that simple underlying EoS are not over-parametrized. For ideal data with small measurement uncertainties, we show that the pressure at roughly twice the nuclear saturation density, rho_sat, can be inferred to within 0.3 dex for many realizations of potential sources of uncertainties. The pressures of more complicated EoS with significant phase transitions can also be inferred to within ~30%. We also find that marginalizing the multi-dimensional parameter space of pressure to infer a mass-radius relation can lead to biases of nearly 1 km in radius, towards larger radii. Using the full, five-dimensional posterior likelihoods avoids this bias.
The increasing number and precision of measurements of neutron star masses, radii, and, in the near future, moments of inertia offer the possibility of precisely determining the neutron star equation of state. One way to facilitate the mapping of obs
Finite-size effects on the gravitational wave signal from a neutron star merger typically manifest at high frequencies where detector sensitivity decreases. Proposed sensitivity improvements can give us access both to stronger signals and to a myriad
The first detection of gravitational waves from a neutron star-neutron star merger, GW170817, has opened up a new avenue for constraining the ultradense-matter equation of state (EOS). The deviation of the observed waveform from a point-particle wave
The observations of compact star inspirals from LIGO/Virgo provide a valuable tool to study the highly uncertain equation of state (EOS) of dense matter at the densities in which the compact stars reside. It is not clear whether the merging stars are
The joint detection of the gravitational wave GW170817, of the short $gamma$-ray burst GRB170817A and of the kilonova AT2017gfo, generated by the the binary neutron star merger observed on August 17, 2017, is a milestone in multimessenger astronomy a