ﻻ يوجد ملخص باللغة العربية
We establish a new estimate for the Ginzburg-Landau energies $E_{epsilon}(u)=int_Mfrac{1}{2}|du|^2+frac{1}{4epsilon^2}(1-|u|^2)^2$ of complex-valued maps $u$ on a compact, oriented manifold $M$ with $b_1(M) eq 0$, obtained by decomposing the harmonic component $h_u$ of the one-form $ju:=u^1du^2-u^2du^1$ into an integral and fractional part. We employ this estimate to show that, for critical points $u_{epsilon}$ of $E_{epsilon}$ arising from the two-parameter min-max construction considered by the author in previous work, a nontrivial portion of the energy must concentrate on a stationary, rectifiable $(n-2)$-varifold as $epsilonto 0$.
We use min-max techniques to produce nontrivial solutions $u_{epsilon}:Mto mathbb{R}^2$ of the Ginzburg-Landau equation $Delta u_{epsilon}+frac{1}{epsilon^2}(1-|u_{epsilon}|^2)u_{epsilon}=0$ on a given compact Riemannian manifold, whose energy grows
We adapt the viscosity method introduced by Rivi`ere to the free boundary case. Namely, given a compact oriented surface $Sigma$, possibly with boundary, a closed ambient Riemannian manifold $(mathcal{M}^m,g)$ and a closed embedded submanifold $mathc
In this work we consider viscosity solutions to second order partial differential equations on Riemannian manifolds. We prove maximum principles for solutions to Dirichlet problem on a compact Riemannian manifold with boundary. Using a different meth
Given any admissible $k$-dimensional family of immersions of a given closed oriented surface into an arbitrary closed Riemannian manifold, we prove that the corresponding min-max width for the area is achieved by a smooth (possibly branched) immersed
In this paper, we consider Hessian equations with its structure as a combination of elementary symmetric functions on closed Kahler manifolds. We provide a sufficient and necessary condition for the solvability of these equations, which generalize th