ﻻ يوجد ملخص باللغة العربية
Based on first-principles study, we report the finding of a new topological semimetal LiBaBi in half-Heusler phase. The remarkable feature of this nonmagnetic, inversion-symmetry-breaking material is that it consists of only simple $s$- and $p$-block elements. Interestingly, the material is ordinary insulator in the absence of spin-orbit coupling (SOC) and becomes nodal-surface topological semimetal showing drumhead states when SOC is included. This is in stark contrast to other nodal-line and nodal-surface semimetals, where the extended nodal structure is destroyed once SOC is included. Importantly, the linear band crossings host three-, four-, five- and six-fold degeneracies near the Fermi level, making this compound very attractive for the study of `unconventional fermions. The band crossing points form a three-dimensional nodal structure around the zone center at the Fermi level. We identify the surface states responsible for the appearance of the drumhead states. The alloy also shows a phase transition from topological semimetal to a trivial insulator on application of pressure. In addition to revealing an intriguing effect of SOC on the nodal structure, our findings introduce a new half-Heusler alloy in the family of topological semimetals, thus creating more avenues for experimental exploration.
Topological materials often exhibit remarkably linear, non-saturating magnetoresistance (LMR), which is both of scientific and technological importance. However, the role of topologically non-trivial states in the emergence of such a behaviour has be
We propose a ferromagnetic Heusler alloy that can switch between a metal and a half-metal. Thiseffect can provide tunable spintronics properties. Using the density functional theory (DFT) withreliable implementations of the electron correlation effec
We report on optically induced, ultrafast magnetization dynamics in the Heusler alloy $mathrm{Co_{2}FeAl}$, probed by time-resolved magneto-optical Kerr effect. Experimental results are compared to results from electronic structure theory and atomist
Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magneto-electric devices. Here, we report on the discovery of an electron-hol
Co2FeSi, a Heusler alloy with the highest magnetic moment per unit cell and the highest Curie temperature, has largely been described theoretically as a half-metal. This conclusion, however, disagrees with Point Contact Andreev Reflection (PCAR) spec