ﻻ يوجد ملخص باللغة العربية
As a continuation of cite{LXY}, the paper aims to justify the high Reynolds numbers limit for the MHD system with Prandtl boundary layer expansion when no-slip boundary condition is imposed on velocity field and perfect conducting boundary condition on magnetic field. Under the assumption that the viscosity and resistivity coefficients are of the same order and the initial tangential magnetic field on the boundary is not degenerate, we justify the validity of the Prandtl boundary layer expansion and give a $L^infty$ estimate on the error by multi-scale analysis.
In the case of favorable pressure gradient, Oleinik proved the global existence of classical solution for the 2-D steady Prandtl equation for a class of positive data. In the case of adverse pressure gradient, an important physical phenomena is the b
In this paper, we are concerned with the motion of electrically conducting fluid governed by the two-dimensional non-isentropic viscous compressible MHD system on the half plane, with no-slip condition for velocity field, perfect conducting condition
This paper is concerned with the vanishing viscosity and magnetic resistivity limit for the two-dimensional steady incompressible MHD system on the half plane with no-slip boundary condition on velocity field and perfectly conducting wall condition o
In this paper, we are concerned with the magnetic effect on the Sobolev solvability of boundary layer equations for the 2D incompressible MHD system without resistivity. The MHD boundary layer is described by the Prandtl type equations derived from t
In this paper, we consider the steady MHD equations with inhomogeneous boundary conditions for the velocity and the tangential component of the magnetic field. Using a new construction of the magnetic lifting, we obtain existence of weak solutions un