ترغب بنشر مسار تعليمي؟ اضغط هنا

Fluids, Superfluids and Supersolids: Dynamics and Cosmology of Self Gravitating Media

182   0   0.0 ( 0 )
 نشر من قبل Luigi Pilo
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute cosmological perturbations for a generic self-gravitating media described by four derivatively- coupled scalar fields. Depending on the internal symmetries of the action for the scalar fields, one can describe perfect fluids, superfluids, solids and supersolids media. Symmetries dictate both dynamical and thermodynamical properties of the media. Generically, scalar perturbations include, besides the gravitational potential, an additional non-adiabatic mode associated with the entropy per particle {sigma}. While perfect fluids and solids are adiabatic with {sigma} constant in time, superfluids and supersolids feature a non-trivial dynamics for {sigma}. Special classes of isentropic media with zero {sigma} can also be found. Tensor modes become massive for solids and supersolids. Such an effective approach can be used to give a very general and symmetry driven modelling of the dark sector.



قيم البحث

اقرأ أيضاً

We address the question whether a medium featuring $p + rho = 0$, dubbed $Lambda$- medium, has to be necessarily a cosmological constant. By using effective field theory, we show that this is not the case for a class of media comprising perfect fluid s, solids and special super solids, providing an explicit construction. The low energy excitations are non trivial and lensing, the growth of large scale structures can be used to clearly distinguish $Lambda$-media from a cosmological constant.
We derive the non-relativistic limit of a massive vector field. We show that the Cartesian spatial components of the vector behave as three identical, non-interacting scalar fields. We find classes of spherical, cylindrical, and planar self-gravitati ng vector solitons in the Newtonian limit. The gravitational properties of the lowest-energy vector solitons$mathrm{-}$the gravitational potential and density field$mathrm{-}$depend only on the net mass of the soliton and the vector particle mass. In particular, these self-gravitating, ground-state vector solitons are independent of the distribution of energy across the vector field components, and are indistinguishable from their scalar-field counterparts. Fuzzy Vector Dark Matter models can therefore give rise to halo cores with identical observational properties to the ones in scalar Fuzzy Dark Matter models. We also provide novel hedgehog vector soliton solutions, which cannot be observed in scalar-field theories. The gravitational binding of the lowest-energy hedgehog halo is about three times weaker than the ground-state vector soliton. Finally, we show that no spherically symmetric solitons exist with a divergence-free vector field.
We present a self-gravitating, analytic and globally regular Skyrmion solution of the Einstein-Skyrme system with winding number w = 1, in presence of a cosmological constant. The static spacetime metric is the direct product RxS3 and the Skyrmion is the self-gravitating generalization of the static hedgehog solution of Manton and Ruback with unit topological charge. This solution can be promoted to a dynamical one in which the spacetime is a cosmology of the Bianchi type-IX with time-dependent scale and squashing coefficients. Remarkably, the Skyrme equations are still identically satisfied for all values of these parameters. Thus, the complete set of field equations for the Einstein-Skyrme-Lambda system in the topological sector reduces to a pair of coupled, autonomous, nonlinear differential equations for the scale factor and a squashing coefficient. These equations admit analytic bouncing cosmological solutions in which the universe contracts to a minimum non-vanishing size, and then expands. A non-trivial byproduct of this solution is that a minor modification of the construction gives rise to a family of stationary, regular configurations in General Relativity with negative cosmological constant supported by an SU(2) nonlinear sigma model. These solutions represent traversable AdS wormholes with NUT parameter in which the only exotic matter required for their construction is a negative cosmological constant.
We examine the dynamics of a self--gravitating magnetized neutron gas as a source of a Bianchi I spacetime described by the Kasner metric. The set of Einstein-Maxwell field equations can be expressed as a dynamical system in a 4-dimensional phase spa ce. Numerical solutions of this system reveal the emergence of a point--like singularity as the final evolution state for a large class of physically motivated initial conditions. Besides the theoretical interest of studying this source in a fully general relativistic context, the resulting idealized model could be helpful in understanding the collapse of local volume elements of a neutron gas in the critical conditions that would prevail in the center of a compact object.
Both cosmological expansion and black holes are ubiquitous features of our observable Universe, yet exact solutions connecting the two have remained elusive. To this end, we study self-gravitating classical fields within dynamical spherically symmetr ic solutions that can describe black holes in an expanding universe. After attempting a perturbative approach of a known black-hole solution with scalar hair, we show by exact methods that the unique scalar field action with first-order derivatives that can source shear-free expansion around a black hole requires noncanonical kinetic terms. The resulting action is an incompressible limit of k-essence, otherwise known as the cuscuton theory, and the spacetime it describes is the McVittie metric. We further show that this solution is an exact solution to the vacuum Hov{r}ava-Lifshitz gravity with anisotropic Weyl symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا