ﻻ يوجد ملخص باللغة العربية
Using effective field theory techniques, we compute quantum corrections to spherically symmetric solutions of Einsteins gravity and focus in particular on the Schwarzschild black hole. Quantum modifications are covariantly encoded in a non-local effective action. We work to quadratic order in curvatures simultaneously taking local and non-local corrections into account. Looking for solutions perturbatively close to that of classical general relativity, we find that an eternal Schwarzschild black hole remains a solution and receives no quantum corrections up to this order in the curvature expansion. In contrast, the field of a massive star receives corrections which are fully determined by the effective field theory.
Using a graphical analysis, we show that for the horizon radius $r_hgtrsim 4.8sqrttheta$, the standard semiclassical Bekenstein-Hawking area law for noncommutative Schwarzschild black hole exactly holds for all orders of $theta$. We also give the cor
We present the geodesical completion of the Schwarzschild black hole in four dimensions which covers the entire space in (u,v) Kruskal-Szekeres coordinates, including the spacetime behind the black and white hole singularities. The gravitational cons
In this paper we study through tunneling formalism, the effect of noncommutativity to Hawking radiation and the entropy of the noncommutative Schwarzschild black hole. In our model we have considered the noncommutativity implemented via the Lorentzia
We reconstruct the complete fermionic orbit of the non-extremal BTZ black hole by acting with finite supersymmetry transformations. The solution satisfies the exact supergravity equations of motion to all orders in the fermonic expansion and the fina
In this manuscript we compute corrections to the global Casimir effect at zero and finite temperature due to Rainbows Gravity (parametrized by $xi$). For this we use the solutions for the scalar field with mass $m$ in the deformed Schwarzschild backg