ﻻ يوجد ملخص باللغة العربية
We make use of the conformal compactification of Minkowski spacetime $M^{#}$ to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime $[M^{#}]^{-1}$ obtained via conformal inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying $M^{#}$ with the projective light cone in $(4+2)$-dimensional spacetime, we write two independent conformal-invariant functionals of the $6$-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.
Conformally compactified (3+1)-dimensional Minkowski spacetime may be identified with the projective light cone in (4+2)-dimensional spacetime. In the latter spacetime the special conformal group acts via rotations and boosts, and conformal inversion
Ladder operators can be useful constructs, allowing for unique insight and intuition. In fact, they have played a special role in the development of quantum mechanics and field theory. Here, we introduce a novel type of ladder operators, which map a
We argue that the scattering of gravitons in ordinary Einstein gravity possesses a hidden conformal symmetry at tree level in any number of dimensions. The presence of this conformal symmetry is indicated by the dilaton soft theorem in string theory,
We develop the covariant phase space formalism allowing for non-vanishing flux, anomalies and field dependence in the vector field generators. We construct a charge bracket that generalizes the one introduced by Barnich and Troessaert and includes co
We classify super-symmetric solutions of the minimal $N=2$ gauged Euclidean supergravity in four dimensions. The solutions with anti-self-dual Maxwell field give rise to anti-self-dual Einstein metrics given in terms of solutions to the $SU(infty)$ T