ﻻ يوجد ملخص باللغة العربية
We present accurate mass and thermodynamic profiles for a sample of 56 galaxy clusters observed with the Chandra X-ray Observatory. We investigate the effects of local gravitational acceleration in central cluster galaxies, and we explore the role of the local free-fall time (t$_{rm ff}$) in thermally unstable cooling. We find that the local cooling time (t$_{rm cool}$) is as effective an indicator of cold gas, traced through its nebular emission, as the ratio of t$_{rm cool}$/t$_{rm ff}$. Therefore, t$_{rm cool}$ alone apparently governs the onset of thermally unstable cooling in hot atmospheres. The location of the minimum t$_{rm cool}$/t$_{rm ff}$, a thermodynamic parameter that simulations suggest may be key in driving thermal instability, is unresolved in most systems. As a consequence, selection effects bias the value and reduce the observed range in measured t$_{rm cool}$/t$_{rm ff}$ minima. The entropy profiles of cool-core clusters are characterized by broken power-laws down to our resolution limit, with no indication of isentropic cores. We show, for the first time, that mass isothermality and the $K propto r^{2/3}$ entropy profile slope imply a floor in t$_{rm cool}$/t$_{rm ff}$ profiles within central galaxies. No significant departures of t$_{rm cool}$/t$_{rm ff}$ below 10 are found, which is inconsistent with many recent feedback models. The inner densities and cooling times of cluster atmospheres are resilient to change in response to powerful AGN activity, suggesting that the energy coupling between AGN heating and atmospheric gas is gentler than most models predict.
We analyzed Chandra X-ray observations of five galaxy clusters whose atmospheric cooling times, entropy parameters, and cooling time to free-fall time ratios within the central galaxies lie below 1 Gyr, below 30 keV cm^2, and between 20 < tcool/tff <
Radiative cooling may plausibly cause hot gas in the centre of a massive galaxy, or galaxy cluster, to become gravitationally unstable. The subsequent collapse of this gas on a dynamical timescale can provide an abundant source of fuel for AGN heatin
We present strong gravitational lensing models for 37 galaxy clusters from the SDSS Giant Arcs Survey. We combine data from multi-band Hubble Space Telescope WFC3imaging, with ground-based imaging and spectroscopy from Magellan, Gemini, APO, and MMT,
We use nine different galaxy formation scenarios in ten cosmological simulation boxes from the EAGLE suite of {Lambda}CDM hydrodynamical simulations to assess the impact of feedback mechanisms in galaxy formation and compare these to observed strong
We exploit a sample of ultra-faint high-redshift galaxies (demagnified HST $H_{160}$ magnitude $>30$) in the Frontier Fields clusters A2744 and M0416 to constrain a theoretical model for the UV luminosity function (LF) in the presence of photoionizat