Ultrasensitivity and Fluctuations in the Barkai-Leibler Model of Chemotaxis Receptors in {it Escherichia coli}


الملخص بالإنكليزية

A stochastic version of the Barkai-Leibler model of chemotaxis receptors in {it E. coli} is studied here to elucidate the effects of intrinsic network noise in their conformational dynamics. It was originally proposed to explain the robust and near-perfect adaptation of {it E. coli} observed across a wide range of spatially uniform attractant/repellent (ligand) concentrations. A receptor is either active or inactive and can stochastically switch between the two states. Enzyme CheR methylates inactive receptors while CheB demethylates active ones and the probability for it to be active depends on its level of methylation and ligandation. A simple version of the model with two methylation sites per receptor (M=2) shows zero-order ultrasensitivity (ZOU) akin to the classical 2-state model of covalent modification studied by Goldbeter and Koshland (GK). For extremely small and large ligand concentrations, the system reduces to two 2-state GK modules. A quantitative measure of the spontaneous fluctuations in activity (variance) estimated mathematically under linear noise approximation (LNA) is found to peak near the ZOU transition. The variance is a weak, non-monotonic and decreasing functions of ligand and receptor concentrations. Gillespie simulations for M=2 show excellent agreement with analytical results obtained under LNA. Numerical results for M=2, 3 and 4 show ZOU in mean activity; the variance is found to be smaller for larger M. The magnitude of receptor noise deduced from available experimental data is consistent with our predictions. A simple analysis of the downstream signaling pathway shows that this noise is large enough to have a beneficial effect on the motility of the organism. The response of mean receptor activity to small time-dependent changes in the external ligand concentration, computed within linear response theory, is found to have a bilobe form.

تحميل البحث