ﻻ يوجد ملخص باللغة العربية
The Perdew-Zunger self-interaction correction cures many common problems associated with semilocal density functionals, but suffers from a size-extensivity problem when Kohn-Sham orbitals are used in the correction. Fermi-L{o}wdin-orbital self-interaction correction (FLOSIC) solves the size-extensivity problem, allowing its use in periodic systems and resulting in better accuracy in finite systems. Although the previously published FLOSIC algorithm [J. Chem. Phys. 140, 121103 (2014)] appears to work well in many cases, it is not fully self-consistent. This would be particularly problematic for systems where the occupied manifold is strongly changed by the correction. In this paper we demonstrate a new algorithm for FLOSIC to achieve full self-consistency with only marginal increase of computational cost. The resulting total energies are found to be lower than previously reported non-self-consistent results.
(Semi)-local density functional approximations (DFAs) suffer from self-interaction error (SIE). When the first ionization energy (IE) is computed as the negative of the highest-occupied orbital (HO) eigenvalue, DFAs notoriously underestimate them com
Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but cl
We study the importance of self-interaction errors in density functional approximations for various water-ion clusters. We have employed the Fermi-Lowdin orbital self-interaction correction (FLOSIC) method in conjunction with LSDA, PBE, and SCAN to d
The Perdew-Zunger self-interaction correction(PZ-SIC) improves the performance of density functional approximations(DFAs) for the properties that involve significant self-interaction error(SIE), as in stretched bond situations, but overcorrects for e
Perdew-Zunger self-interaction correction (PZ-SIC) offers a route to remove self-interaction errors on an orbital-by-orbital basis. A recent formulation of PZ-SIC by Pederson, Ruzsinszky and Perdew proposes restricting the unitary transformation to l