ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated vs. uncorrelated noise acting on a quantum refrigerator

78   0   0.0 ( 0 )
 نشر من قبل Bayan Karimi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Two qubits form a quantum four-level system. The golden-rule based transition rates between these states are determined by the coupling of the qubits to noise sources. We demonstrate that depending on whether the noise acting on the two qubits is correlated or not, these transitions are governed by different selection rules. In particular, we find that for fully correlated or anticorrelated noise, there is a protected state, and the dynamics of the system depends then on its initialization. For nearly (anti)correlated noise, there is a long time scale determining the temporal evolution of the qubits. We apply our results to a quantum Otto refrigerator based on two qubits coupled to hot and cold baths. Even in the case when the two qubits do not interact with each other, the cooling power of the refrigerator does not scale with the number ($=2$ here) of the qubits when there is strong correlation of noise acting on them.



قيم البحث

اقرأ أيضاً

Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, on the oth er hand, have attracted a great deal of attention in the last few years. In this article, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a trade-off relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called bounding second order cooling rate and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second order cooling rate. We study the efficiency of the refrigerator at maximum bounding second order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second order cooling rate is given by a simple formula reminiscent of the Curzon-Ahlborn relation.
We study the phenomenon of absorption refrigeration, where refrigeration is achieved by heating instead of work, in two different setups: a minimal set up based on coupled qubits, and two non-linearly coupled resonators. Considering ZZ interaction be tween the two qubits, we outline the basic ingredients required to achieve cooling. Using local as well as global master equations, we observe that inclusion of XX type term in the qubit-qubit coupling is detrimental to cooling. We compare the cooling effect obtained in the qubit case with that of non-linearly coupled resonators (multi-level system) where the ZZ interaction translates to a Kerr-type non-linearity. For small to intermediate strengths of non-linearity, we observe that multi-level quantum systems, for example qutrits, give better cooling effect compared to the qubits. Using Keldysh non-equilibrium Greens function formalism, we go beyond first order sequential tunneling processes and study the effect of higher order processes on refrigeration. We find reduced cooling effect compared to the master equation calculations.
Quantum metrology offers an enhanced performance in experiments such as gravitational wave-detection, magnetometry or atomic clocks frequency calibration. The enhancement, however, requires a delicate tuning of relevant quantum features such as entan glement or squeezing. For any practical application the inevitable impact of decoherence needs to be taken into account in order to correctly quantify the ultimate attainable gain in precision. We compare the applicability and the effectiveness of various methods of calculating the ultimate precision bounds resulting from the presence of decoherence. This allows us to put a number of seemingly unrelated concepts into a common framework and arrive at an explicit hierarchy of quantum metrological methods in terms of the tightness of the bounds they provide. In particular, we show a way to extend the techniques originally proposed in Demkowicz-Dobrzanski et al 2012 Nat. Commun. 3 1063, so that they can be efficiently applied not only in the asymptotic but also in the finite-number of particles regime. As a result, we obtain a simple and direct method, yielding bounds that interpolate between the quantum enhanced scaling characteristic for small number of particles and the asymptotic regime, where quantum enhancement amounts to a constant factor improvement. Methods are applied to numerous models including noisy phase and frequency estimation, as well as the estimation of the decoherence strength itself.
We consider fault-tolerant quantum computation in the context where there are no fresh ancilla qubits available during the computation, and where the noise is due to a general quantum channel. We show that there are three classes of noisy channels: I n the first, typified by the depolarizing channel, computation is only possible for a logarithmic time. In the second class, of which the dephasing channel is an example, computation is possible for polynomial time. The amplitude damping channel is an example of the third class, and for this class of channels, it is possible to compute for an exponential time in the number of qubits available.
The central challenge in building a quantum computer is error correction. Unlike classical bits, which are susceptible to only one type of error, quantum bits (qubits) are susceptible to two types of error, corresponding to flips of the qubit state a bout the $X$- and $Z$-directions. While the Heisenberg Uncertainty Principle precludes simultaneous monitoring of $X$- and $Z$-flips on a single qubit, it is possible to encode quantum information in large arrays of entangled qubits that enable accurate monitoring of all errors in the system, provided the error rate is low. Another crucial requirement is that errors cannot be correlated. Here, we characterize a superconducting multiqubit circuit and find that charge fluctuations are highly correlated on a length scale over 600~$mu$m; moreover, discrete charge jumps are accompanied by a strong transient suppression of qubit energy relaxation time across the millimeter-scale chip. The resulting correlated errors are explained in terms of the charging event and phonon-mediated quasiparticle poisoning associated with absorption of gamma rays and cosmic-ray muons in the qubit substrate. Robust quantum error correction will require the development of mitigation strategies to protect multiqubit arrays from correlated errors due to particle impacts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا