ﻻ يوجد ملخص باللغة العربية
Galaxy evolution and star formation are two multi-scale problems tightly linked to each other. To understand the interstellar cycle, which triggers galaxy evolution, it is necessary to describe simultaneously the large-scale evolution widely induced by the feedback processes and the details of the gas dynamics that controls the star formation process through gravitational collapse. We perform a set of three-dimensional high-resolution numerical simulations of a turbulent, self-gravitating and magnetized interstellar medium within a $1 mathrm{kpc}$ stratified box with supernova feedback correlated with star-forming regions. In particular, we focus on the role played by the magnetic field and the feedback on the galactic vertical structure, the star formation rate (SFR) and the flow dynamics. For this purpose we vary their respective intensities. We extract properties of the dense clouds arising from the turbulent motions and compute power spectra of various quantities. Using a distribution of supernovae sufficiently correlated with the dense gas, we find that supernova explosions can reproduce the observed SFR, particularly if the magnetic field is on the order of a few $mu G$. The vertical structure, which results from a dynamical and an energy equilibrium is well reproduced by a simple analytical model, which allows us to estimate the coupling between the gas and the supernovae. We found the coupling to be rather low and on the order of 1.5$%$. Strong magnetic fields may help to increase this coupling by a factor of about 2-3. To characterize the flow we compute the power spectra of various quantities in 3D but also in 2D in order to account for the stratification of the galactic disc.
The fractal shape and multi-component nature of the interstellar medium together with its vast range of dynamical scales provides one of the great challenges in theoretical and numerical astrophysics. Here we will review recent progress in the direct
We use numerical simulations to analyze the evolution and properties of superbubbles (SBs), driven by multiple supernovae (SNe), that propagate into the two-phase (warm/cold), cloudy interstellar medium (ISM). We consider a range of mean background d
CO(J=1-0) line emission is a widely used observational tracer of molecular gas, rendering essential the X_CO factor, which is applied to convert CO luminosity to H_2 mass. We use numerical simulations to study how X_CO depends on numerical resolution
Large-scale coherent magnetic fields observed in the nearby galaxies are thought to originate by a mean-field dynamo. This is governed via the turbulent electromotive force (EMF, $overline{mathcal{E}} $) generated by the helical turbulence driven by
Dust is formed out of stellar material and is constantly affected by different mechanisms occurring in the ISM. Dust grains behave differently under these mechanisms depending on their sizes, and therefore the dust grain size distribution also evolve