ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure distribution and turbulence in self-consistently supernova-driven ISM of multiphase magnetized galactic discs

82   0   0.0 ( 0 )
 نشر من قبل Hennebelle
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galaxy evolution and star formation are two multi-scale problems tightly linked to each other. To understand the interstellar cycle, which triggers galaxy evolution, it is necessary to describe simultaneously the large-scale evolution widely induced by the feedback processes and the details of the gas dynamics that controls the star formation process through gravitational collapse. We perform a set of three-dimensional high-resolution numerical simulations of a turbulent, self-gravitating and magnetized interstellar medium within a $1 mathrm{kpc}$ stratified box with supernova feedback correlated with star-forming regions. In particular, we focus on the role played by the magnetic field and the feedback on the galactic vertical structure, the star formation rate (SFR) and the flow dynamics. For this purpose we vary their respective intensities. We extract properties of the dense clouds arising from the turbulent motions and compute power spectra of various quantities. Using a distribution of supernovae sufficiently correlated with the dense gas, we find that supernova explosions can reproduce the observed SFR, particularly if the magnetic field is on the order of a few $mu G$. The vertical structure, which results from a dynamical and an energy equilibrium is well reproduced by a simple analytical model, which allows us to estimate the coupling between the gas and the supernovae. We found the coupling to be rather low and on the order of 1.5$%$. Strong magnetic fields may help to increase this coupling by a factor of about 2-3. To characterize the flow we compute the power spectra of various quantities in 3D but also in 2D in order to account for the stratification of the galactic disc.



قيم البحث

اقرأ أيضاً

The fractal shape and multi-component nature of the interstellar medium together with its vast range of dynamical scales provides one of the great challenges in theoretical and numerical astrophysics. Here we will review recent progress in the direct modelling of interstellar hydromagnetic turbulence, focusing on the role of energy injection by supernova explosions. The implications for dynamo theory will be discussed in the context of the mean-field approach. Results obtained with the test field-method are confronted with analytical predictions and estimates from quasilinear theory. The simulation results enforce the classical understanding of a turbulent Galactic dynamo and, more importantly, yield new quantitative insights. The derived scaling relations enable confident global mean-field modelling.
We use numerical simulations to analyze the evolution and properties of superbubbles (SBs), driven by multiple supernovae (SNe), that propagate into the two-phase (warm/cold), cloudy interstellar medium (ISM). We consider a range of mean background d ensities n_avg=0.1-10 cm^{-3} and intervals between SNe dt_sn=0.01-1 Myr, and follow each SB until the radius reaches (1-2)H, where H is the characteristic ISM disk thickness. Except for embedded dense clouds, each SB is hot until a time t_sf,m when the shocked warm gas at the outer front cools and forms an overdense shell. Subsequently, diffuse gas in the SB interior remains at T_h 10^6-10^7K with expansion velocity v_h~10^2-10^3km/s (both highest for low dt_sn). At late times, the warm shell gas velocities are several 10s to ~100km/s. While shell velocities are too low to escape from a massive galaxy, they are high enough to remove substantial mass from dwarfs. Dense clouds are also accelerated, reaching a few to 10s of km/s. We measure the mass in hot gas per SN, M_h/N_SN, and the total radial momentum of the bubble per SN, p_b/N_SN. After t_sf,m, M_h/N_SN 10-100M_sun (highest for low n_avg), while p_b/N_SN 0.7-3x10^5M_sun km/s (highest for high dt_sn). If galactic winds in massive galaxies are loaded by the hot gas in SBs, we conclude that the mass-loss rates would generally be lower than star formation rates. Only if the SN cadence is much higher than typical in galactic disks, as may occur for nuclear starbursts, SBs can break out while hot and expel up to 10 times the mass locked up in stars. The momentum injection values, p_b/N_SN, are consistent with requirements to control star formation rates in galaxies at observed levels.
CO(J=1-0) line emission is a widely used observational tracer of molecular gas, rendering essential the X_CO factor, which is applied to convert CO luminosity to H_2 mass. We use numerical simulations to study how X_CO depends on numerical resolution , non-steady-state chemistry, physical environment, and observational beam size. Our study employs 3D magnetohydrodynamics (MHD) simulations of galactic disks with solar neighborhood conditions, where star formation and the three-phase interstellar medium (ISM) are self-consistently regulated by gravity and stellar feedback. Synthetic CO maps are obtained by post-processing the MHD simulations with chemistry and radiation transfer. We find that CO is only an approximate tracer of H_2. On parsec scales, W_CO is more fundamentally a measure of mass-weighted volume density, rather than H_2 column density. Nevertheless, $langle X_mathrm{CO} rangle=0.7-1.0times10^{20}~mathrm{cm^{-2}K^{-1}km^{-1}s}$ consistent with observations, insensitive to the evolutionary ISM state or radiation field strength if steady-state chemistry is assumed. Due to non-steady-state chemistry, younger molecular clouds have slightly lower X_CO and flatter profiles of X_CO versus extinction than older ones. The CO-dark H_2 fraction is 26-79 %, anti-correlated with the average extinction. As the observational beam size increases from 1 pc to 100 pc, X_CO increases by a factor of ~ 2. Under solar neighborhood conditions, X_CO in molecular clouds is converged at a numerical resolution of 2 pc. However, the total CO abundance and luminosity are not converged even at the numerical resolution of 1 pc. Our simulations successfully reproduce the observed variations of X_CO on parsec scales, as well as the dependence of X_CO on extinction and the CO excitation temperature.
Large-scale coherent magnetic fields observed in the nearby galaxies are thought to originate by a mean-field dynamo. This is governed via the turbulent electromotive force (EMF, $overline{mathcal{E}} $) generated by the helical turbulence driven by supernova (SN) explosions in the differentially rotating interstellar medium (ISM). In this paper we aim to investigate the possibility of dynamo action by the virtue of buoyancy due to a cosmic ray (CR) component injected through the SN explosions. We do this by analysing the magnetohydrodynamic simulations of local shearing box of ISM, in which the turbulence is driven via random SN explosions and the energy of the explosion is distributed in the CR and/or thermal energy components. We use the magnetic field aligned diffusion prescription for the propagation of CR. We compare the evolution of magnetic fields in the models with the CR component to our previous models that did not involve the CR. We demonstrate that the inclusion of CR component enhances the growth of dynamo slightly. We further compute the underlying dynamo coefficients using the test-fields method, and argue that the entire evolution of the large scale mean magnetic field can be reproduced with an $alpha-Omega$ dynamo model. We also show that the inclusion of CR component leads to an unbalanced turbulent pumping between magnetic field components and additional dynamo action by the Radler effect.
103 - M. Relano 2020
Dust is formed out of stellar material and is constantly affected by different mechanisms occurring in the ISM. Dust grains behave differently under these mechanisms depending on their sizes, and therefore the dust grain size distribution also evolve s as part of the dust evolution itself. Following how the grain size distribution evolves is a difficult computing task that is just recently being overtaking. Smoothed particle hydrodynamic (SPH) simulations of a single galaxy as well as cosmological simulations are producing the first predictions of the evolution of the dust grain size distribution. We compare for the first time the evolution of the dust grain size distribution predicted by the SPH simulations with the results provided by the observations. We analyse how the radial distribution of the small to large grain mass ratio (D(S)/D(L)) changes over the whole discs in three galaxies: M 101, NGC 628 and M 33. We find good agreement between the observed radial distribution of D(S)/D(L) and what is obtained from the SPH simulations of a single galaxy. The central parts of NGC 628, at high metallicity and with a high molecular gas fraction, are mainly affected not only by accretion but also by coagulation of dust grains. The centre of M 33, having lower metallicity and lower molecular gas fraction, presents an increase of D(S)/D(L), showing that shattering is very effective in creating a large fraction of small grains. Observational results provided by our galaxies confirm the general relations predicted by the cosmological simulations based on the two grain size approximation. However, we present evidence that the simulations could be overestimating the amount of large grains in high massive galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا