ترغب بنشر مسار تعليمي؟ اضغط هنا

Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

135   0   0.0 ( 0 )
 نشر من قبل David Long
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

EIT waves are freely-propagating global pulses in the low corona which are strongly associated with the initial evolution of coronal mass ejections (CMEs). They are thought to be large-amplitude, fast-mode magnetohydrodynamic waves initially driven by the rapid expansion of a CME in the low corona. An EIT wave was observed on 6 July 2012 to impact an adjacent trans-equatorial loop system which then exhibited a decaying oscillation as it returned to rest. Observations of the loop oscillations were used to estimate the magnetic field strength of the loop system by studying the decaying oscillation of the loop, measuring the propagation of ubiquitous transverse waves in the loop and extrapolating the magnetic field from observed magnetograms. Observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory (SDO/AIA) and the Coronal Multi-channel Polarimeter (CoMP) were used to study the event. An Empirical Mode Decomposition analysis was used to characterise the oscillation of the loop system in CoMP Doppler velocity and line width and in AIA intensity. The loop system was shown to oscillate in the 2nd harmonic mode rather than at the fundamental frequency, with the seismological analysis returning an estimated magnetic field strength of ~5.5+/-1.5 G. This compares to the magnetic field strength estimates of ~1-9 G and ~3-9 G found using the measurements of transverse wave propagation and magnetic field extrapolation respectively.



قيم البحث

اقرأ أيضاً

Sunspots on the surface of the Sun are the observational signatures of intense manifestations of tightly packed magnetic field lines, with near-vertical field strengths exceeding 6,000 G in extreme cases. It is well accepted that both the plasma dens ity and the magnitude of the magnetic field strength decrease rapidly away from the solar surface, making high-cadence coronal measurements through traditional Zeeman and Hanle effects difficult since the observational signatures are fraught with low-amplitude signals that can become swamped with instrumental noise. Magneto-hydrodynamic (MHD) techniques have previously been applied to coronal structures, with single and spatially isolated magnetic field strengths estimated as 9-55 G. A drawback with previous MHD approaches is that they rely on particular wave modes alongside the detectability of harmonic overtones. Here we show, for the first time, how omnipresent magneto-acoustic waves, originating from within the underlying sunspot and propagating radially outwards, allow the spatial variation of the local coronal magnetic field to be mapped with high precision. We find coronal magnetic field strengths of 32 +/- 5 G above the sunspot, which decrease rapidly to values of approximately 1 G over a lateral distance of 7000 km, consistent with previous isolated and unresolved estimations. Our results demonstrate a new, powerful technique that harnesses the omnipresent nature of sunspot oscillations to provide magnetic field mapping capabilities close to a magnetic source in the solar corona.
Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by SDO/AIA on 09 January 2014, in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hours before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.
Collimated ejections of plasma called coronal hole jets are commonly observed in polar coronal holes. However, such coronal jets are not only a specific features of polar coronal holes but they can also be found in coronal holes appearing at lower he liographic latitudes. In this paper we present some observations of equatorial coronal hole jets made up with data provided by the STEREO/SECCHI instruments during a period comprising March 2007 and December 2007. The jet events are selected by requiring at least some visibility in both COR1 and EUVI instruments. We report 15 jet events, and we discuss their main features. For one event, the uplift velocity has been determined as about 200 km/s, while the deceleration rate appears to be about 0.11 km/s2, less than solar gravity. The average jet visibility time is about 30 minutes, consistent with jet observed in polar regions. On the basis of the present dataset, we provisionally conclude that there are not substantial physical differences between polar and equatorial coronal hole jets.
245 - V. Vasanth 2013
The Type-II solar radio burst recorded on 13 June 2010 by the radio spectrograph of the Hiraiso Solar Observatory was employed to estimate the magnetic-field strength in the solar corona. The burst was characterized by a well pronounced band-splittin g, which we used to estimate the density jump at the shock and Alfven Mach number using the Rankine-Hugoniot relations. The plasma frequency of the Type-II bursts is converted into height [R] in solar radii using the appropriate density model, then we estimated the shock speed [Vs], coronal Alfven velocity [Va], and the magnetic-field strength at different heights. The relative bandwidth of the band-split is found to be in the range 0.2 -- 0.25, corresponding to the density jump of X = 1.44 -- 1.56, and the Alfven Mach number of MA = 1.35 -- 1.45. The inferred mean shock speed was on the order of V ~ 667 km/s. From the dependencies V(R) and MA(R) we found that Alfven speed slightly decreases at R ~ 1.3 -- 1.5. The magnetic-field strength decreases from a value between 2.7 and 1.7 G at R ~ 1.3 -- 1.5 Rs depending on the coronal-density model employed. We find that our results are in good agreement with the empirical scaling by Dulk and McLean (Solar Phys. 57, 279, 1978) and Gopalswamy et al. (Astrophys. J. 744, 72, 2012). Our result shows that Type-II band splitting method is an important tool for inferring the coronal magnetic field, especially when independent measurements were made from white light observations.
Shibata & Yokoyama (1999, 2002) proposed a method of estimating the coronal magnetic field strengths ($B$) and magnetic loop lengths ($L$) of solar and stellar flares, on the basis of magnetohydrodynamic simulations of the magnetic reconnection model . Using the scaling law provided by Shibata & Yokoyama (1999, 2002), $B$ and $L$ are obtained as functions of the emission measure ($EM=n^2L^3$) and temperature ($T$) at the flare peak. Here, $n$ is the coronal electron density of the flares. This scaling law enables the estimation of $B$ and $L$ for unresolved stellar flares from the observable physical quantities $EM$ and $T$, which is helpful for studying stellar surface activities. To apply this scaling law to stellar flares, we discuss its validity for spatially resolved solar flares. $EM$ and $T$ were calculated from GOES soft X-ray flux data, and $B$ and $L$ are theoretically estimated using the scaling law. For the same flare events, $B$ and $L$ were also observationally estimated with images taken by Solar Dynamics Observatory (SDO)/ Helioseismic and Magnetic Imager (HMI) Magnetogram and Atmospheric Imaging Assembly (AIA) 94{AA} pass band. As expected, a positive correlation was found between the theoretically and observationally estimated values. We interpret this result as indirect evidence that flares are caused by magnetic reconnection. Moreover, this analysis makes us confident in the validity of applying this scaling law to stellar flares as well as solar flares.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا