ﻻ يوجد ملخص باللغة العربية
We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code CoolTlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.
We numerically studied close encounters between a young stellar system hosting a massive, gravitationally fragmenting disk and an intruder diskless star with the purpose to determine the evolution of fragments that have formed in the disk prior to th
Sub-stellar objects exhibit photometric variability, which is believed to be caused by a number of processes, such as magnetically-driven spots or inhomogeneous cloud coverage. Recent models have shown that turbulent flows and waves, including intern
We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and
Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains a challenge. The presence of very thick clouds has been suggested because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data wit
There is a subclass of the X-ray jets from young stellar objects which are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models attribute the strong heating to shocks in the jets. However, the mechanism that local