ترغب بنشر مسار تعليمي؟ اضغط هنا

Model atmospheres of sub-stellar mass objects

219   0   0.0 ( 0 )
 نشر من قبل Ivan Hubeny
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ivan Hubeny




اسأل ChatGPT حول البحث

We present an outline of basic assumptions and governing structural equations describing atmospheres of substellar mass objects, in particular the extrasolar giant planets and brown dwarfs. Although most of the presentation of the physical and numerical background is generic, details of the implementation pertain mostly to the code CoolTlusty. We also present a review of numerical approaches and computer codes devised to solve the structural equations, and make a critical evaluation of their efficiency and accuracy.



قيم البحث

اقرأ أيضاً

We numerically studied close encounters between a young stellar system hosting a massive, gravitationally fragmenting disk and an intruder diskless star with the purpose to determine the evolution of fragments that have formed in the disk prior to th e encounter. Numerical hydrodynamics simulations in the non-inertial frame of reference of the host star were employed to simulate the prograde and retrograde co-planar encounters. The initial configuration of the target system (star plus disk) was obtained via a separate numerical simulation featuring the gravitational collapse of a solar-mass pre-stellar core. We found that close encounters can lead to the ejection of fragments that have formed in the disk of the target prior to collision. In particular, prograde encounters are more efficient in ejecting the fragments than the retrograde encounters. The masses of ejected fragments are in the brown-dwarf mass regime. They also carry away an appreciable amount of gas in their gravitational radius of influence, implying that these objects may possess extended disks or envelopes, as also suggested by Thies et al. (2015). Close encounters can also lead to the ejection of entire spiral arms, followed by fragmentation and formation of freely-floating objects straddling the planetary mass limit. However, numerical simulations with a higher resolution are needed to confirm this finding.
Sub-stellar objects exhibit photometric variability, which is believed to be caused by a number of processes, such as magnetically-driven spots or inhomogeneous cloud coverage. Recent models have shown that turbulent flows and waves, including intern al gravity waves, may play an important role in cloud evolution. The aim of this paper is to investigate the effect of IGW on dust nucleation and dust growth, and whether observations of the resulting cloud structures could be used to recover atmospheric density information. For a simplified atmosphere in two dimensions, we numerically solved the governing fluid equations to simulate the effect on dust nucleation and mantle growth as a result of the passage of an IGW. Furthermore, we derived an expression that relates the properties of the wave-induced cloud structures to observable parameters in order to deduce the atmospheric density. Numerical simulations show that the $rho, p, T$ variations caused by gravity waves lead to an increase of the nucleation rate by up to a factor 20, and an increase of the mantle growth rate by up to a factor 1.6, compared to their equilibrium values. An exploration of the wider parameter space shows that in absolute terms, the increase in nucleation due to IGW is stronger in cooler (T dwarfs) and TiO2-rich sub-stellar atmospheres. The relative increase, however, is greater in warmer (L dwarf) and TiO2-poor atmospheres due to conditions less suited for efficient nucleation at equilibrium. These variations lead to banded areas in which dust formation is much more pronounced, similar to the cloud structures observed on Earth. We show that IGW in the atmosphere of sub-stellar objects can produce banded clouds structures similar to that observed on Earth. We propose a method with which potential observations of banded clouds could be used to estimate the atmospheric density of sub-stellar objects.
300 - Nicolas Lodieu 2020
We highlight the importance of eclipsing double-line binaries in our understanding on star formation and evolution. We review the recent discoveries of low-mass and sub-stellar eclipsing binaries belonging to star-forming regions, open clusters, and globular clusters identified by ground-based surveys and space missions with high-resolution spectroscopic follow-up. These discoveries provide benchmark systems with known distances, metallicities, and ages to calibrate masses and radii predicted by state-of-the-art evolutionary models to a few percent. We report their density and discuss current limitations on the accuracy of the physical parameters. We discuss future opportunities and highlight future guidelines to fill gaps in age and metallicity to improve further our knowledge of low-mass stars and brown dwarfs.
Atmospheric modeling of low-gravity (VL-G) young brown dwarfs remains a challenge. The presence of very thick clouds has been suggested because of their extremely red near-infrared (NIR) spectra, but no cloud models provide a good fit to the data wit h a radius compatible with evolutionary models for these objects. We show that cloudless atmospheres assuming a temperature gradient reduction caused by fingering convection provides a very good model to match the observed VL-G NIR spectra. The sequence of extremely red colors in the NIR for atmospheres with effective temperature from ~2000 K down to ~1200 K is very well reproduced with predicted radii typical of young low-gravity objects. Future observations with NIRSPEC and MIRI on the James Webb Space Telescope (JWST) will provide more constrains in the mid-infrared, helping to confirm/refute whether or not the NIR reddening is caused by fingering convection. We suggest that the presence/absence of clouds will be directly determined by the silicate absorption features that can be observed with MIRI. JWST will therefore be able to better characterize the atmosphere of these hot young brown dwarfs and their low-gravity exoplanet analogues.
There is a subclass of the X-ray jets from young stellar objects which are heated very close to the footpoint of the jets, particularly DG Tau jets. Previous models attribute the strong heating to shocks in the jets. However, the mechanism that local izes the heating at the footpoint remains puzzling. We presented a different model of such X-ray jets, in which the disk atmosphere is magnetically heated. Our disk corona model is based on the so-called nanoflare model for the solar corona. We show that the magnetic heating near the disks can result in the formation of a hot corona with a temperature of > 10^6 K even if the average field strength in the disk is moderately weak, > 1 G. We determine the density and the temperature at the jet base by considering the energy balance between the heating and cooling. We derive the scaling relations of the mass loss rate and terminal velocity of jets. Our model is applied to the DG Tau jets. The observed temperature and estimated mass loss rate are consistent with the prediction of our model in the case of the disk magnetic field strength of ~20 G and the heating region of < 0.1 au. The derived scaling relation of the temperature of X-ray jets could be a useful tool to estimate the magnetic field strength. We also found that the jet X-ray can have a significant impact on the ionization degree near the disk surface and the dead-zone size.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا