ﻻ يوجد ملخص باللغة العربية
We use the Sloan Digital Sky Survey Data Release 12, which is the largest available white dwarf catalog to date, to study the evolution of the kinematical properties of the population of white dwarfs in the Galactic disc. We derive masses, ages, photometric distances and radial velocities for all white dwarfs with hydrogen-rich atmospheres. For those stars for which proper motions from the USNO-B1 catalog are available the true three-dimensional components of the stellar space velocity are obtained. This subset of the original sample comprises 20,247 objects, making it the largest sample of white dwarfs with measured three-dimensional velocities. Furthermore, the volume probed by our sample is large, allowing us to obtain relevant kinematical information. In particular, our sample extends from a Galactocentric radial distance $R_{rm G}=7.8$~kpc to 9.3~kpc, and vertical distances from the Galactic plane ranging from $Z=-0.5$~kpc to 0.5~kpc. We examine the mean components of the stellar three-dimensional velocities, as well as their dispersions with respect to the Galactocentric and vertical distances. We confirm the existence of a mean Galactocentric radial velocity gradient, $partiallangle V_{rm R}rangle/partial R_{rm G}=-3pm5$~km~s$^{-1}$~kpc$^{-1}$. We also confirm North-South differences in $langle V_{rm z}rangle$. Specifically, we find that white dwarfs with $Z>0$ (in the North Galactic hemisphere) have $langle V_{rm z}rangle<0$, while the reverse is true for white dwarfs with $Z<0$. The age-velocity dispersion relation derived from the present sample indicates that the Galactic population of white dwarfs may have experienced an additional source of heating, which adds to the secular evolution of the Galactic disc.
The spectroscopic catalogue of white dwarf-main sequence (WDMS) binaries from the Sloan Digital Sky Survey (SDSS) is the largest and most homogeneous sample of compact binary stars currently known. However, because of selection effects, the current s
As they evolve, white dwarfs undergo major changes in surface composition, a phenomenon known as spectral evolution. In particular, some stars enter the cooling sequence with helium atmospheres (type DO) but eventually develop hydrogen atmospheres (t
We present a Monte Carlo population synthesis study of white dwarf-main sequence (WD+MS) binaries in the Galactic disk aimed at reproducing the ensemble properties of the entire population observed by the Sloan Digital Sky Survey (SDSS) Data Release
SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white-dwarf n
White dwarfs (WDs) are powerful tools to study the evolutionary history of stars and binaries in the Galaxy. But do we understand their multiplicity from a theoretical point of view? This can be tested by a comparison with the sample of WDs within 20