ﻻ يوجد ملخص باللغة العربية
Automata expressiveness is an essential feature in understanding which of the formalisms available should be chosen for modelling a particular problem. Probabilistic and stochastic automata are suitable for modelling systems exhibiting probabilistic behavior and their expressiveness has been studied relative to non-probabilistic transition systems and Markov chains. In this paper, we consider previous formalisms of Timed, Probabilistic and Stochastic Timed Automata, we present our new model of Timed Automata with Polynomial Delay, we introduce a measure of expressiveness for automata we call trace expressiveness and we characterize the expressiveness of these models relative to each other under this new measure.
We consider previous models of Timed, Probabilistic and Stochastic Timed Automata, we introduce our model of Timed Automata with Polynomial Delay and we characterize the expressiveness of these models relative to each other.
Probabilistic timed automata are an extension of timed automata with discrete probability distributions. We consider model-checking algorithms for the subclasses of probabilistic timed automata which have one or two clocks. Firstly, we show that PCTL
We solve some decision problems for timed automata which were recently raised by S. Tripakis in [ Folk Theorems on the Determinization and Minimization of Timed Automata, in the Proceedings of the International Workshop FORMATS2003, LNCS, Volume 2791
Timed Automata (TA) are a very popular modeling formalism for systems with time-sensitive properties. A common task is to verify if a network of TA satisfies a given property, usually expressed in Linear Temporal Logic (LTL), or in a subset of Timed
Active learning of timed languages is concerned with the inference of timed automata from observed timed words. The agent can query for the membership of words in the target language, or propose a candidate model and verify its equivalence to the tar