ﻻ يوجد ملخص باللغة العربية
The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. In the quest of finding a pertinent material, $alpha$-RuCl$_{3}$ recently emerged as a prime candidate. Here we unveil highly unusual low-temperature heat conductivity $kappa$ of $alpha$-RuCl$_{3}$: beyond a magnetic field of $B_capprox$ 7.5 T, $kappa$ increases by about one order of magnitude, resulting in a large magnetic field dependent peak at about 7 K, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpectedly large energy gap arises, which increases approximately linearly with the magnetic field and reaches a remarkably large $hbaromega_0/k_Bapprox $ 50 K at 18 T.
The honeycomb Kitaev model in a magnetic field is a source of a topological quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. We present experimental results for the thermal Hall effect of the materia
$alpha$-RuCl$_3$ has attracted enormous attention since it has been proposed as a prime candidate to study fractionalized magnetic excitations akin to Kitaevs honeycomb-lattice spin liquid. We have performed a detailed specific-heat investigation at
$alpha$-RuCl$_{3}$ is a major candidate for the realization of the Kitaev quantum spin liquid, but its zigzag antiferromagnetic order at low temperatures indicates deviations from the Kitaev model. We have quantified the spin Hamiltonian of $alpha$-R
$alpha$-RuCl$_3$ is drawing much attention as a promising candidate Kitaev quantum spin liquid. However, despite intensive research efforts, controversy remains about the form of the basic interactions governing the physics of this material. Even the
High-resolution thermal expansion and magnetostriction measurements were performed on single crystals of $alpha$-RuCl$_3$ in magnetic fields applied parallel to the Ru-Ru bonds. The length changes were measured in the direction perpendicular to the h