ﻻ يوجد ملخص باللغة العربية
We study the effect of density fluctuations induced by turbulence on the HI/H$_2$ structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas, and chemical HI/H$_2$ balance calculations. We derive atomic-to-molecular density profiles and the HI column density probability density function (PDF) assuming chemical equilibrium. We find that while the HI/H$_2$ density profiles are strongly perturbed in turbulent gas, the mean HI column density is well approximated by the uniform-density analytic formula of Sternberg et al. (2014). The PDF width depends on (a) the radiation intensity to mean density ratio, (b) the sonic Mach number and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the HI PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of HI in the Perseus molecular cloud. We show that a narrow observed HI PDF may imply small scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
We present a simple analytic procedure for generating atomic-to-molecular (HI-to-H$_2$) density profiles for optically thick clouds illuminated by far-ultraviolet radiation. Our procedure is based on the analytic theory for the structure of one-dimen
The process of atomic-to-molecular (HI-to-H$_2$) gas conversion is fundamental for molecular-cloud formation and star formation. 21 cm observations of the star-forming region W43 revealed extremely high HI column densities, of 120-180 M$_{odot}$ pc$^
We apply the Sternberg et al. (2014) theoretical model to analyze HI and H2 observations in the Perseus molecular cloud. We constrain the physical properties of the HI shielding envelopes and the nature of the HI-to-H2 transitions. Our analysis (Bial
We study the H2 molecular content in high redshift damped Lyman-alpha systems (DLAs) as a function of the HI column density. We find a significant increase of the H2 molecular content around log N(HI) (cm^-2)~21.5-22, a regime unprobed until now in i
C$^+$ is a critical constituent of many regions of the interstellar medium, as it can be a major reservoir of carbon and, under a wide range of conditions, the dominant gas coolant. Emission from its 158$mu$m fine structure line is used to trace the