ﻻ يوجد ملخص باللغة العربية
In the study of complex physical and biological systems represented by multivariate stochastic processes, an issue of great relevance is the description of the system dynamics spanning multiple temporal scales. While methods to assess the dynamic complexity of individual processes at different time scales are well-established, multiscale analysis of directed interactions has never been formalized theoretically, and empirical evaluations are complicated by practical issues such as filtering and downsampling. Here we extend the very popular measure of Granger causality (GC), a prominent tool for assessing directed lagged interactions between joint processes, to quantify information transfer across multiple time scales. We show that the multiscale processing of a vector autoregressive (AR) process introduces a moving average (MA) component, and describe how to represent the resulting ARMA process using state space (SS) models and to combine the SS model parameters for computing exact GC values at arbitrarily large time scales. We exploit the theoretical formulation to identify peculiar features of multiscale GC in basic AR processes, and demonstrate with numerical simulations the much larger estimation accuracy of the SS approach compared with pure AR modeling of filtered and downsampled data. The improved computational reliability is exploited to disclose meaningful multiscale patterns of information transfer between global temperature and carbon dioxide concentration time series, both in paleoclimate and in recent years.
This is a comment to the paper A study of problems encountered in Granger causality analysis from a neuroscience perspective. We agree that interpretation issues of Granger Causality in Neuroscience exist (partially due to the historical unfortunate
Continuous, automated surveillance systems that incorporate machine learning models are becoming increasingly more common in healthcare environments. These models can capture temporally dependent changes across multiple patient variables and can enha
Granger causality has been employed to investigate causality relations between components of stationary multiple time series. We generalize this concept by developing statistical inference for local Granger causality for multivariate locally stationa
Introduced more than a half century ago, Granger causality has become a popular tool for analyzing time series data in many application domains, from economics and finance to genomics and neuroscience. Despite this popularity, the validity of this no
Since interactions in neural systems occur across multiple temporal scales, it is likely that information flow will exhibit a multiscale structure, thus requiring a multiscale generalization of classical temporal precedence causality analysis like Gr