ﻻ يوجد ملخص باللغة العربية
Thermal transport properties of amorphous materials at low temperatures are governed by the interaction between phonons and localized excitations referred to as tunneling two level systems (TLS). The temperature variation of the thermal conductivity of these amorphous materials is considered as universal and is characterized by a quadratic power law. This is well described by the phenomenological TLS model even though its microscopic explanation is still elusive. Here, by scaling down to the nanometer scale amorphous systems much below the bulk phonon-TLS mean free path, we probed the robustness of that model in restricted geometry systems. Using very sensitive thermal conductance measurements, we demonstrate that the temperature dependence of the thermal conductance of silicon nitride nanostructures remains mostly quadratic independently of the nanowire section. It is not following the cubic power law in temperature as expected in a Casimir-Ziman regime of boundary limited thermal transport. This shows a thermal transport counter intuitively dominated by phonon-TLS interactions and not by phonon-boundary scattering in the nanowires. This could be ascribed to an unexpected high density of TLS on the surfaces which still dominates the phonon diffusion processes at low temperatures and explains why the universal quadratic temperature dependence of thermal conductance still holds for amorphous nanowires.
We have performed thermal conductance measurements on individual single crystalline silicon suspended nanowires. The nanowires (130 nm thick and 200 nm wide) are fabricated by e-beam lithography and suspended between two separated pads on Silicon On
In the current paper a set of experiments dedicated to investigations of local electronic transport in undoped InAs nanowires at helium temperatures in the presence of a charged atomic-force microscope tip is presented. Both nanowires without defects
The yield of amorphous solids like metallic glasses under external stress was discussed asserting that it is related to the glass transition by increasing temperature, or that it can be understood using statistical theories of various sorts. Here we
We have measured the electronic heat capacity of thin film nanowires of copper and silver at temperatures 0.1 - 0.3 K; the films were deposited by standard electron-beam evaporation. The specific heat of the Ag films of sub-100 nm thickness agrees wi
We probe the electron transport properties in the shell of GaAs/In0.2Ga0.8As core/shell nanowires at high electric fields using optical pump / THz probe spectroscopy with broadband THz pulses and peak electric fields up to 0.6 MV/cm. The plasmon reso