ﻻ يوجد ملخص باللغة العربية
Inviscid computational results are presented on a self-propelled virtual body combined with an airfoil undergoing pitch oscillations about its leading-edge. The scaling trends of the time-averaged thrust forces are shown to be predicted accurately by Garricks theory. However, the scaling of the time-averaged power for finite amplitude motions is shown to deviate from the theory. Novel time-averaged power scalings are presented that account for a contribution from added-mass forces, from the large-amplitude separating shear layer at the trailing-edge, and from the proximity of the trailing-edge vortex. Scaling laws for the self-propelled speed, efficiency and cost of transport ($CoT$) are subsequently derived. Using these scaling relations the self-propelled metrics can be predicted to within 5% of their full-scale values by using parameters known a priori. The relations may be used to drastically speed-up the design phase of bio-inspired propulsion systems by offering a direct link between design parameters and the expected $CoT$. The scaling relations also offer one of the first mechanistic rationales for the scaling of the energetics of self-propelled swimming. Specifically, the cost of transport is shown to scale predominately with the added mass power. This suggests that the $CoT$ of organisms or vehicles using unsteady propulsion will scale with their mass as $CoT propto m^{-1/3}$, which is indeed shown to be consistent with existing biological data.
Scaling laws for the thrust production and energetics of self-propelled or fixed-velocity three-dimensional rigid propulsors undergoing pitching motions are presented. The scaling relations extend the two-dimensional scaling laws presented in Moored
Scaling laws for the thrust production and power consumption of a purely pitching hydrofoil in ground effect are presented. For the first time, ground effect scaling laws based on physical insights capture the propulsive performance over a wide range
Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on qua
We study the dynamic wetting of a self-propelled viscous droplet using the time-dependent lubrication equation on a conical-shaped substrate for different cone radii, cone angles and slip lengths. The droplet velocity is found to increase with the co
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circula