ترغب بنشر مسار تعليمي؟ اضغط هنا

Inviscid scaling laws of a self-propelled pitching airfoil

99   0   0.0 ( 0 )
 نشر من قبل Keith Moored Iii
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Inviscid computational results are presented on a self-propelled virtual body combined with an airfoil undergoing pitch oscillations about its leading-edge. The scaling trends of the time-averaged thrust forces are shown to be predicted accurately by Garricks theory. However, the scaling of the time-averaged power for finite amplitude motions is shown to deviate from the theory. Novel time-averaged power scalings are presented that account for a contribution from added-mass forces, from the large-amplitude separating shear layer at the trailing-edge, and from the proximity of the trailing-edge vortex. Scaling laws for the self-propelled speed, efficiency and cost of transport ($CoT$) are subsequently derived. Using these scaling relations the self-propelled metrics can be predicted to within 5% of their full-scale values by using parameters known a priori. The relations may be used to drastically speed-up the design phase of bio-inspired propulsion systems by offering a direct link between design parameters and the expected $CoT$. The scaling relations also offer one of the first mechanistic rationales for the scaling of the energetics of self-propelled swimming. Specifically, the cost of transport is shown to scale predominately with the added mass power. This suggests that the $CoT$ of organisms or vehicles using unsteady propulsion will scale with their mass as $CoT propto m^{-1/3}$, which is indeed shown to be consistent with existing biological data.



قيم البحث

اقرأ أيضاً

Scaling laws for the thrust production and energetics of self-propelled or fixed-velocity three-dimensional rigid propulsors undergoing pitching motions are presented. The scaling relations extend the two-dimensional scaling laws presented in Moored & Quinn (2018) by accounting for the added mass of a finite-span propulsor, the downwash/upwash effects from the trailing vortex system of a propulsor, and the elliptical topology of shedding trailing-edge vortices. The novel three-dimensional scaling laws are validated with self-propelled inviscid simulations and fixed-velocity experiments over a range of reduced frequencies, Strouhal numbers and aspect ratios relevant to bio-inspired propulsion. The scaling laws elucidate the dominant flow physics behind the thrust production and energetics of pitching bio-propulsors, and they provide guidance for the design of bio-inspired propulsive systems.
Scaling laws for the thrust production and power consumption of a purely pitching hydrofoil in ground effect are presented. For the first time, ground effect scaling laws based on physical insights capture the propulsive performance over a wide range of biologically-relevant Strouhal numbers, dimensionless amplitudes, and dimensionless ground distances. This is achieved by advancing previous scaling laws (Moored & Quinn 2018) with physics-driven modifications to the added mass and circulatory forces to account for ground distance variations. The key physics introduced are the increase in the added mass of a foil near the ground and the reduction in the influence of a wake vortex system due to the influence of its image system. The scaling laws are found to be in good agreement with new inviscid simulations and viscous experiments, and can be used to accelerate the design of bio-inspired hydrofoils that oscillate near a ground plane or two out-of-phase foils in a side-by-side arrangement.
Following the idea that dissipation in turbulence at high Reynolds number is by events singular in space-time and described by solutions of the inviscid Euler equations, we draw the conclusion that in such flows scaling laws should depend only on qua ntities appearing in the Euler equations. This excludes viscosity or a turbulent length as scaling parameters and constrains drastically possible analytical pictures of this limit. We focus on the law of drag by Newton for a projectile moving quickly in a fluid at rest. Inspired by the Newtons drag force law (proportional to the square of the speed of the moving object in the limit of large Reynolds numbers), which is well verified in experiments when the location of the detachment of the boundary layer is defined, we propose an explicit relationship between Reynoldss stress in the turbulent wake and quantities depending on the velocity field (averaged in time but depending on space), in the form of an integro-differential equation for the velocity which is solved for a Poiseuille flow in a circular pipe.
We study the dynamic wetting of a self-propelled viscous droplet using the time-dependent lubrication equation on a conical-shaped substrate for different cone radii, cone angles and slip lengths. The droplet velocity is found to increase with the co ne angle and the slip length, but decrease with the cone radius. We show that a film is formed at the receding part of the droplet, much like the classical Landau-Levich-Derjaguin (LLD) film. The film thickness $h_f$ is found to decrease with the slip length $lambda$. By using the approach of matching asymptotic profiles in the film region and the quasi-static droplet, we obtain the same film thickness as the results from the lubrication approach for all slip lengths. We identify two scaling laws for the asymptotic regimes: $h_fh_o sim Ca^{2/3}$ for $lambdall h_f$ and $h_f h^{3}_osim (Ca/lambda)^2$ for $lambdagg h_f$, here $1/h_o$ is a characteristic length at the receding contact line and $Ca$ is the capillary number. We compare the position and the shape of the droplet predicted from our continuum theory with molecular dynamics simulations, which are in close agreement. Our results show that manipulating the droplet size, the cone angle and the slip length provides different schemes for guiding droplet motion and coating the substrate with a film.
We report the generation of directed self-propelled motion of a droplet of aniline oil with a velocity on the order of centimeters per second on an aqueous phase. It is found that, depending on the initial conditions, the droplet shows either circula r or beeline motion in a circular Petri dish. The motion of a droplet depends on volume of the droplet and concentration of solution. The velocity decreases when volume of the droplet and concentration of solution increase. Such unique motion is discussed in terms of Marangoni-driven spreading under chemical nonequilibrium. The simulation reproduces the mode of motion in a circular Petri dish.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا