ﻻ يوجد ملخص باللغة العربية
The need for modern data analytics to combine relational, procedural, and map-reduce-style functional processing is widely recognized. State-of-the-art systems like Spark have added SQL front-ends and relational query optimization, which promise an increase in expressiveness and performance. But how good are these extensions at extracting high performance from modern hardware platforms? While Spark has made impressive progress, we show that for relational workloads, there is still a significant gap compared with best-of-breed query engines. And when stepping outside of the relational world, query optimization techniques are ineffective if large parts of a computation have to be treated as user-defined functions (UDFs). We present Flare: a new back-end for Spark that brings performance closer to the best SQL engines, without giving up the added expressiveness of Spark. We demonstrate order of magnitude speedups both for relational workloads such as TPC-H, as well as for a range of machine learning kernels that combine relational and iterative functional processing. Flare achieves these results through (1) compilation to native code, (2) replacing parts of the Spark runtime system, and (3) extending the scope of optimization and code generation to large classes of UDFs.
We propose TRANSMUT-Spark, a tool that automates the mutation testing process of Big Data processing code within Spark programs. Apache Spark is an engine for Big Data Processing. It hides the complexity inherent to Big Data parallel and distributed
The objective of this work was to utilize BigBench [1] as a Big Data benchmark and evaluate and compare two processing engines: MapReduce [2] and Spark [3]. MapReduce is the established engine for processing data on Hadoop. Spark is a popular alterna
Emerging data analysis involves the ingestion and exploration of new data sets, application of complex functions, and frequent query revisions based on observing prior query answers. We call this new type of analysis evolutionary analytics and identi
The CERN IT provides a set of Hadoop clusters featuring more than 5 PBytes of raw storage with different open-source, user-level tools available for analytical purposes. The CMS experiment started collecting a large set of computing meta-data, e.g. d
In recent years, emerging hardware storage technologies have focused on divergent goals: better performance or lower cost-per-bit of storage. Correspondingly, data systems that employ these new technologies are optimized either to be fast (but expens