ﻻ يوجد ملخص باللغة العربية
Similarly to the cosmic star formation history, the black hole accretion rate density of the Universe peaked at 1<z<3. This cosmic epoch is hence best suited for investigating the effects of radiative feedback from AGN. Observational efforts are underway to quantify the impact of AGN feedback, if any, on their host galaxies. Here we present a study of the molecular gas content of AGN hosts at z~1.5 using CO[2-1] line emission observed with ALMA for a sample of 10 AGNs. We compare this with a sample of galaxies without an AGN matched in redshift, stellar mass, and star formation rate. We detect CO in 3 AGNs with $mathrm{L_{CO} sim 6.3-25.1times 10^{9} L_{odot}}$ which translates to a molecular hydrogen gas mass of $mathrm{2.5-10times 10^{10} M_{odot}}$ assuming conventional conversion factor of $mathrm{alpha_{CO}}sim3.6$. Our results indicate a >99% probability of lower depletion time scales and lower molecular gas fractions in AGN hosts with respect to the non-AGN comparison sample. We discuss the implications of these observations on the impact that AGN feedback may have on star formation efficiency of z>1 galaxies.
We present rest-frame far-infrared (FIR) and optical size measurements of AGN hosts and star-forming galaxies in the COSMOS field, enabled by high-resolution ALMA/1 mm (0.1 arcsec - 0.4 arcsec) and HST/F814W imaging (~ 0.1 arcsec). Our sample include
We present an analysis of new and archival ALMA observations of molecular gas in twelve central cluster galaxies. We examine emerging trends in molecular filament morphology and gas velocities to understand their origins. Molecular gas masses in thes
We present new ALMA observations aimed at mapping molecular gas reservoirs through the CO(3-2) transition in three quasars at $zsimeq2.4$, LBQS 0109+0213, 2QZ J002830.4-281706, and [HB89] 0329-385. Previous [OIII]5007 observations of these quasars sh
The standard AGN-galaxy co-evolutionary scenario predicts a phase of deeply buried supermassive black hole growth coexisting with a starburst (SB) before feedback phenomena deplete the cold molecular gas reservoir of the galaxy and an optically lumin
We present ALMA CO(2-1) spectroscopy of 6 massive (log$_{10}$M$_{rm{*}}/rm{M}_odot>$11.3) quiescent galaxies at $zsim1.5$. These data represent the largest sample using CO emission to trace molecular gas in quiescent galaxies above $z>1$, achieving a