ﻻ يوجد ملخص باللغة العربية
We present the discovery and follow-up observations of the second known variable warm DQ white dwarf OW J175358.85-310728.9 (OW J1753-3107). OW J1753-3107 is the brightest of any of the currently known warm or hot DQ and was discovered in the OmegaWhite Survey as exhibiting optical variations on a period of 35.5452 (2) mins, with no evidence for other periods in its light curves. This period has remained constant over the last two years and a single-period sinusoidal model provides a good fit for all follow-up light curves. The spectrum consists of a very blue continuum with strong absorption lines of neutral and ionised carbon, a broad He I 4471 A line, and possibly weaker hydrogen lines. The C I lines are Zeeman split, and indicate the presence of a strong magnetic field. Using spectral Paschen-Back model descriptions, we determine that OW J1753-3107 exhibits the following physical parameters: T_eff = 15430 K, log(g) = 9.0, log(N(C)/N(He)) = -1.2, and the mean magnetic field strength is B_z =2.1 MG. This relatively low temperature and carbon abundance (compared to the expected properties of hot DQs) is similar to that seen in the other warm DQ SDSS J1036+6522. Although OW J1753-3107 appears to be a twin of SDSS J1036+6522, it exhibits a modulation on a period slightly longer than the dominant period in SDSS J1036+6522 and has a higher carbon abundance. The source of variations is uncertain, but they are believed to originate from the rotation of the magnetic white dwarf.
We present the goals, strategy and first results of the OmegaWhite survey: a wide-field high-cadence $g$-band synoptic survey which aims to unveil the Galactic population of short-period variable stars (with periods $<$ 80 min), including ultracompac
We present photometric and spectroscopic follow-up observations of short-period variables discovered in the OmegaWhite survey: a wide-field high-cadence g-band synoptic survey targeting the Galactic Plane. We have used fast photometry on the SAAO 1.0
OmegaWhite is a wide-field, high cadence, synoptic survey targeting fields in the southern Galactic plane, with the aim of discovering short period variable stars. Our strategy is to take a series of 39 s exposures in the g band of a 1 square degree
The Mt. Suhora M,dwarf survey searching for pulsations in low mass main sequence stars has acquired CCD photometry of 46 M,dwarf stars during the first year of the project (Baran et al 2011). As a by-product of this search hundreds field stars have b
We present phase-resolved spectroscopy of two new short period low accretion rate magnetic binaries, SDSSJ125044.42+154957.3 (Porb = 86 min) and SDSSJ151415.65+074446.5 (Porb = 89 min). Both systems were previously identified as magnetic white dwarfs