Social Discrete Choice Models


الملخص بالإنكليزية

Human decision making underlies data generating process in multiple application areas, and models explaining and predicting choices made by individuals are in high demand. Discrete choice models are widely studied in economics and computational social sciences. As digital social networking facilitates information flow and spread of influence between individuals, new advances in modeling are needed to incorporate social information into these models in addition to characteristic features affecting individual choices. In this paper, we propose two novel models with scalable training algorithms: local logistics graph regularization (LLGR) and latent class graph regularization (LCGR) models. We add social regularization to represent similarity between friends, and we introduce latent classes to account for possible preference discrepancies between different social groups. Training of the LLGR model is performed using alternating direction method of multipliers (ADMM), and training of the LCGR model is performed using a specialized Monte Carlo expectation maximization (MCEM) algorithm. Scalability to large graphs is achieved by parallelizing computation in both the expectation and the maximization steps. The LCGR model is the first latent class classification model that incorporates social relationships among individuals represented by a given graph. To evaluate our two models, we consider three classes of data to illustrate a typical large-scale use case in internet and social media applications. We experiment on synthetic datasets to empirically explain when the proposed model is better than vanilla classification models that do not exploit graph structure. We also experiment on real-world data, including both small scale and large scale real-world datasets, to demonstrate on which types of datasets our model can be expected to outperform state-of-the-art models.

تحميل البحث