ﻻ يوجد ملخص باللغة العربية
We present a sample of observations of thermonuclear (type-I) X-ray bursts, selected for comparison with numerical models. Provided are examples of four distinct cases of thermonuclear ignition: He-ignition in mixed H/He fuel (case 1 of Fujimoto et al. 1981); He-ignition in pure He fuel, following exhaustion of accreted H by steady burning (case 2); ignition in (almost) pure He accumulated from an evolved donor in an ultracompact system; and an example of a superburst, thought to arise from ignition of a layer of carbon fuel produced as a by-product of more frequent bursts. For regular bursts, we measured the recurrence time and calculated averaged burst profiles from RXTE observations. We have also estimated the recurrence time for pairs of bursts, including those observed during a transient outburst modelled using a numerical ignition code. For each pair of bursts we list the burst properties including recurrence time, fluence and peak flux, the persistent flux level (and inferred accretion rate) as well as the ratio of persistent flux to fluence. In the accompanying material we provide a bolometric lightcurve for each burst, determined from time-resolved spectral analysis. Along with the inferred or adopted parameters for each burst system, including distance, surface gravity, and redshift, these data are suggested as a suitable test cases for ignition models.
We describe a blind uniform search for thermonuclear burst oscillations (TBOs) in the majority of Type-I bursts observed by RXTE (2118 bursts from 57 neutron stars). We examined 2-2002 Hz power spectra from the Fourier transform in sliding 0.5-2 s wi
The prototypical accretion-powered millisecond pulsar SAX J1808.4-3658 was observed simultaneously with Chandra-LETGS and RXTE-PCA near the peak of a transient outburst in November 2011. A single thermonuclear (type-I) burst was detected, the brighte
Gamma-ray bursts (GRBs) are the most energetic phenomena in the Universe; believed to result from the collapse and subsequent explosion of massive stars. Even though it has profound consequences for our understanding of their nature and selection bia
We report for the first time below 1.5 keV, the detection of a secondary peak in an Eddington-limited thermonuclear X-ray burst observed by the Neutron Star Interior Composition Explorer (NICER) from the low-mass X-ray binary 4U 1608-52. Our time-res
Recently we have made measurements of thermonuclear burst energetics and recurrence times which are unprecedented in their precision, largely thanks to the sensitivity of the Rossi X-ray Timing Explorer. In the Clocked Burster, GS 1826-24, hydrogen b