ﻻ يوجد ملخص باللغة العربية
A geometric entropy is defined as the Riemannian volume of the parameter space of a statistical manifold associated with a given network. As such it can be a good candidate for measuring networks complexity. Here we investigate its ability to single out topological features of networks proceeding in a bottom-up manner: first we consider small size networks by analytical methods and then large size networks by numerical techniques. Two different classes of networks, the random graphs and the scale--free networks, are investigated computing their Betti numbers and then showing the capability of geometric entropy of detecting homologies.
We unveil the existence of a non-trivial Berry phase associated to the dynamics of a quantum particle in a one dimensional box with moving walls. It is shown that a suitable choice of boundary conditions has to be made in order to preserve unitarity.
Noethers celebrated theorem associating symmetry and conservation laws in classical field theory is adapted to allow for broken symmetry in geometric mechanics and is shown to play a central role in deriving and understanding the generation of fluid
In this paper we formulate a geometric theory of thermal stresses. Given a temperature distribution, we associate a Riemannian material manifold to the body, with a metric that explicitly depends on the temperature distribution. A change of temperatu
This study derives geometric, variational discretizations of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation
We consider the geometrization of quantum mechanics. We then focus on the pull-back of the Fubini-Study metric tensor field from the projective Hibert space to the orbits of the local unitary groups. An inner product on these tensor fields allows us