An Accelerated Analog Neuromorphic Hardware System Emulating NMDA- and Calcium-Based Non-Linear Dendrites


الملخص بالإنكليزية

This paper presents an extension of the BrainScaleS accelerated analog neuromorphic hardware model. The scalable neuromorphic architecture is extended by the support for multi-compartment models and non-linear dendrites. These features are part of a SI{65}{ anometer} prototype ASIC. It allows to emulate different spike types observed in cortical pyramidal neurons: NMDA plateau potentials, calcium and sodium spikes. By replicating some of the structures of these cells, they can be configured to perform coincidence detection within a single neuron. Built-in plasticity mechanisms can modify not only the synaptic weights, but also the dendritic synaptic composition to efficiently train large multi-compartment neurons. Transistor-level simulations demonstrate the functionality of the analog implementation and illustrate analogies to biological measurements.

تحميل البحث