ﻻ يوجد ملخص باللغة العربية
This paper presents an extension of the BrainScaleS accelerated analog neuromorphic hardware model. The scalable neuromorphic architecture is extended by the support for multi-compartment models and non-linear dendrites. These features are part of a SI{65}{ anometer} prototype ASIC. It allows to emulate different spike types observed in cortical pyramidal neurons: NMDA plateau potentials, calcium and sodium spikes. By replicating some of the structures of these cells, they can be configured to perform coincidence detection within a single neuron. Built-in plasticity mechanisms can modify not only the synaptic weights, but also the dendritic synaptic composition to efficiently train large multi-compartment neurons. Transistor-level simulations demonstrate the functionality of the analog implementation and illustrate analogies to biological measurements.
This paper presents the concepts behind the BrainScales (BSS) accelerated analog neuromorphic computing architecture. It describes the second-generation BrainScales-2 (BSS-2) version and its most recent in-silico realization, the HICANN-X Application
To rapidly process temporal information at a low metabolic cost, biological neurons integrate inputs as an analog sum but communicate with spikes, binary events in time. Analog neuromorphic hardware uses the same principles to emulate spiking neural
The neuromorphic BrainScaleS-2 ASIC comprises mixed-signal neurons and synapse circuits as well as two versatile digital microprocessors. Primarily designed to emulate spiking neural networks, the system can also operate in a vector-matrix multiplica
We present software facilitating the usage of the BrainScaleS-2 analog neuromorphic hardware system as an inference accelerator for artificial neural networks. The accelerator hardware is transparently integrated into the PyTorch machine learning fra
As deep neural networks require tremendous amount of computation and memory, analog computing with emerging memory devices is a promising alternative to digital computing for edge devices. However, because of the increasing simulation time for analog