Generalized self-energy embedding theory


الملخص بالإنكليزية

Ab initio quantum chemistry calculations for systems with large active spaces are notoriously difficult and cannot be successfully tackled by standard methods. In this letter, we generalize a Greens function QM/QM embedding method called self-energy embedding theory (SEET) that has the potential to be successfully employed to treat large active spaces. In generalized SEET, active orbitals are grouped into intersecting groups of few orbitals allowing us to perform multiple parallel calculations yielding results comparable to the full active space treatment. We examine generalized SEET on a series of examples and discuss a hierarchy of systematically improvable approximations.

تحميل البحث