ﻻ يوجد ملخص باللغة العربية
We investigate possible signatures of halo assembly bias for spectroscopically selected galaxy groups from the GAMA survey using weak lensing measurements from the spatially overlapping regions of the deeper, high-imaging-quality photometric KiDS survey. We use GAMA groups with an apparent richness larger than 4 to identify samples with comparable mean host halo masses but with a different radial distribution of satellite galaxies, which is a proxy for the formation time of the haloes. We measure the weak lensing signal for groups with a steeper than average and with a shallower than average satellite distribution and find no sign of halo assembly bias, with the bias ratio of $0.85^{+0.37}_{-0.25}$, which is consistent with the $Lambda$CDM prediction. Our galaxy groups have typical masses of $10^{13} M_{odot}/h$, naturally complementing previous studies of halo assembly bias on galaxy cluster scales.
We constrain the average halo ellipticity of ~2 600 galaxy groups from the Galaxy And Mass Assembly (GAMA) survey, using the weak gravitational lensing signal measured from the overlapping Kilo Degree Survey (KiDS). To do so, we quantify the azimutha
We use the first 100 sq. deg. of overlap between the Kilo-Degree Survey (KiDS) and the Galaxy And Mass Assembly (GAMA) survey to determine the galaxy halo mass of ~10,000 spectroscopically-confirmed satellite galaxies in massive ($M > 10^{13}h^{-1}{r
In Montero-Dorta et al. 2017, we show that luminous red galaxies (LRGs) from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) at $zsim0.55$ can be divided into two groups based on their star formation histories. So-called fast-growing LRGs
We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the fr
The Galaxy And Mass Assembly Survey (GAMA) covers five fields with highly complete spectroscopic coverage ($>95$ per cent) to intermediate depths ($r<19.8$ or $i < 19.0$ mag), and collectively spans 250 square degrees of Equatorial or Southern sky. F