ﻻ يوجد ملخص باللغة العربية
We introduce a method of local gating for van der Waals heterostructures, employing a few-layer graphene patterned bottom gate. Being a member of the 2D material family, few-layer graphene adapts perfectly to the commonly used stacking method. Its versatility regarding patterning as well as its flatness make it an ideal candidate for experiments on locally gated 2D materials. Moreover, in combination with ultra-thin hexagonal boron nitride as an insulating layer, sharp potential steps can be created and the quality of the investigated 2D material can be sustained. To underline the good feasibility and performance, we show results on transport experiments in periodically modulated graphene- boron nitride heterostructures, where the charge carrier density is tuned via locally acting patterned few layer graphene bottom gates and a global back gate.
Graphene constitutes one of the key elements in many functional van der Waals heterostructures. However, it has negligible optical visibility due to its monolayer nature. Here we study the visibility of graphene in various van der Waals heterostructu
Magnetic proximity effects are crucial ingredients for engineering spintronic, superconducting, and topological phenomena in heterostructures. Such effects are highly sensitive to the interfacial electronic properties, such as electron wave function
We report an experimental study of excitons in a double quantum well van der Waals heterostructure made of atomically thin layers of Mo* and hexagonal boron nitride (hBN). The emission of neutral and charged excitons is controlled by gate voltage, te
Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline
Two dimensional materials are usually envisioned as flat, truly 2D layers. However out-of-plane corrugations are inevitably present in these materials. In this manuscript, we show that graphene flakes encapsulated between insulating crystals (hBN, WS