ﻻ يوجد ملخص باللغة العربية
The various types of communication technologies and mobility features in Internet of Things (IoT) on the one hand enable fruitful and attractive applications, but on the other hand facilitates malware propagation, thereby raising new challenges on handling IoT-empowered malware for cyber security. Comparing with the malware propagation control scheme in traditional wireless networks where nodes can be directly repaired and secured, in IoT, compromised end devices are difficult to be patched. Alternatively, blocking malware via patching intermediate nodes turns out to be a more feasible and practical solution. Specifically, patching intermediate nodes can effectively prevent the proliferation of malware propagation by securing infrastructure links and limiting malware propagation to local device-to-device dissemination. This article proposes a novel traffic-aware patching scheme to select important intermediate nodes to patch, which applies to the IoT system with limited patching resources and response time constraint. Experiments on real-world trace datasets in IoT networks are conducted to demonstrate the advantage of the proposed traffic-aware patching scheme in alleviating malware propagation.
Given that security threats and privacy breaches are com- monplace today, it is an important problem for one to know whether their device(s) are in a good state of security, or is there a set of high- risk vulnerabilities that need to be addressed. I
The rapid development of IoT applications and their use in various fields of everyday life has resulted in an escalated number of different possible cyber-threats, and has consequently raised the need of securing IoT devices. Collecting Cyber-Threat
With the rapid growth of the Internet-of-Things (IoT), concerns about the security of IoT devices have become prominent. Several vendors are producing IP-connected devices for home and small office networks that often suffer from flawed security desi
Information sharing is vital in resisting cyberattacks, and the volume and severity of these attacks is increasing very rapidly. Therefore responders must triage incoming warnings in deciding how to act. This study asked a very specific question: how
Defending computer networks from cyber attack requires coordinating actions across multiple nodes based on imperfect indicators of compromise while minimizing disruptions to network operations. Advanced attacks can progress with few observable signal