ترغب بنشر مسار تعليمي؟ اضغط هنا

Super-deblended Dust Emission in Galaxies: I. The GOODS-North Catalog and the Cosmic Star Formation Rate Density out to Redshift 6

126   0   0.0 ( 0 )
 نشر من قبل Daizhong Liu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new technique to measure multi-wavelength Super-deblended photometry from highly confused images, which we apply to Herschel and ground-based far-infrared (FIR) and (sub-)millimeter (mm) data in the northern field of the Great Observatories Origins Deep Survey (GOODS). There are two key novelties. First, starting with a large database of deep Spitzer 24{mu}m and VLA 20cm detections that are used to define prior positions for fitting the FIR/submm data, we perform an active selection of useful priors independently at each frequency band, moving from less to more confused bands. Exploiting knowledge of redshift and all available photometry, we identify hopelessly faint priors that we remove from the fitting pool. This approach significantly reduces blending degeneracies and allows reliable photometry to be obtained for galaxies in FIR+mm bands. Second, we obtain well-behaved, nearly Gaussian flux density uncertainties, individually tailored to all fitted priors in each band. This is done by exploiting extensive simulations that allow us to calibrate the conversion of formal fitting uncertainties to realistic uncertainties depending on quantities directly measurable. We achieve deeper detection limits with high fidelity measurements and uncertainties at FIR+mm bands. As an illustration of the utility of these measurements, we identify 70 galaxies with z>3 and reliable FIR+mm detections. We present new constraints on the cosmic star formation rate density at 3<z<6, finding a significant contribution from z>3 dusty galaxies that are missed by optical-to-near-infrared color selection. Photometric measurements for 3306 priors, including over 1000 FIR+mm detections are released publicly with our catalog.



قيم البحث

اقرأ أيضاً

We have used near-ultraviolet (NUV) to mid-infrared (MIR) composite spectral energy distributions (SEDs) to simultaneously model the attenuated stellar and dust emission of 0.5 < z < 2.0 galaxies. These composite SEDs were previously constructed from the photometric catalogs of the NEWFIRM Medium-Band Survey, by stacking the observed photometry of galaxies that have similar rest-frame NUV-to-NIR SEDs. In this work, we include a stacked MIPS 24 micron measurement for each SED type to extend the SEDs to rest-frame MIR wavelengths. Consistent with previous studies, the observed MIR emission for most SED types is higher than expected from only the attenuated stellar emission. We fit the NUV-to-MIR composite SEDs by the Flexible Stellar Population Synthesis (SPS) models, which include both stellar and dust emission. We compare the best-fit star formation rates (SFRs) to the SFRs based on simple UV+IR estimators. Interestingly, the UV and IR luminosities overestimate SFRs - compared to the model SFRs - by more than ~ 1 dex for quiescent galaxies, while for the highest star-forming galaxies in our sample the two SFRs are broadly consistent. The difference in specific SFRs also shows a gradually increasing trend with declining specific SFR, implying that quiescent galaxies have even lower specific SFRs than previously found. Contributions from evolved stellar populations to both the UV and the MIR SEDs most likely explain the discrepancy. Based on this work, we conclude that SFRs should be determined from modeling the attenuated stellar and dust emission simultaneously, instead of employing simple UV+IR-based SFR estimators.
Star-forming dwarf galaxies have properties similar to those expected in high-redshift galaxies. Hence, these local galaxies may provide insights into the evolution of the first galaxies, and the physical processes at work. We present a sample of ele ven potential local analogs to high-$z$ (LAHz) galaxies. The sample consists of blue compact dwarf galaxies, selected to have spectral energy distributions that fit galaxies at $1.5<z<4$. We use SOFIA-HAWC+ observations combined with optical and near-infrared data to characterize the dust properties, star formation rate (SFR) and star formation histories (SFH) of the sample of LAHz. We employ Bayesian analysis to characterize the dust using two-component black-body models. Using the LIGHTNING package we fit the spectral energy distribution of the LAHz galaxies over the FUV-FIR wavelength range, and derive the SFH in five time-steps up to a look-back time of 13.3 Gyr. Of the eleven LAHz candidates, six galaxies have SFH consistent with no star formation activity at look-back times beyond 1 Gyr. The remaining galaxies show residual levels of star formation at ages $gtrsim$1,Gyr, making them less suitable as local analogs. The six young galaxies stand out in our sample by having the lowest gas-phase metallicities. They are characterized by warmer dust, having the highest specific SFR, and the highest gas mass fractions. The young age of these six galaxies suggests that merging is less important as a driver of the star formation activity. The six LAHz candidates are promising candidates for studies of the gas dynamics role in driving star formation.
We present ALMA observations of two moderate luminosity quasars at redshift 6. These quasars from the Canada-France High-z Quasar Survey (CFHQS) have black hole masses of ~10^8 M_solar. Both quasars are detected in the [CII] line and dust continuum. Combining these data with our previous study of two similar CFHQS quasars we investigate the population properties. We show that z>6 quasars have a significantly lower far-infrared luminosity than bolometric-luminosity-matched samples at lower redshift, inferring a lower star formation rate, possibly correlated with the lower black hole masses at z=6. The ratios of [CII] to far-infrared luminosities in the CFHQS quasars are comparable with those of starbursts of similar star formation rate in the local universe. We determine values of velocity dispersion and dynamical mass for the quasar host galaxies based on the [CII] data. We find that there is no significant offset from the relations defined by nearby galaxies with similar black hole masses. There is however a marked increase in the scatter at z=6, beyond the large observational uncertainties.
We use the James Clerk Maxwell Telescopes SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we co nstruct an 850 micron source catalog to 2 mJy containing 49 sources detected above the 4-sigma level. We use an ultradeep (11.5 uJy at 5-sigma) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9 arcmin radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio flux dependent K-z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 solar masses per year to z~6. We find galaxies with SFRs up to ~6,000 solar masses per year over the redshift range z=1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 solar masses per year.
We use 3035 Herschel-SPIRE 500$mu$m sources from 20.3 sq deg of sky in the HerMES Lockman, ES1 and XMM-LSS areas to estimate the star-formation rate density at z = 1-6. 500 mu sources are associated first with 350 and 250 mu sources, and then with Sp itzer 24 mu sources from the SWIRE photometric redshift catalogue. The infrared and submillimetre data are fitted with a set of radiative-transfer templates corresponding to cirrus (quiescent) and starburst galaxies. Lensing candidates are removed via a set of colour-colour and colour-redshift constraints. Star-formation rates are found to extend from < 1 to 20,000 Mo/yr. Such high values were also seen in the all-sky IRAS Faint Source Survey. Star-formation rate functions are derived in a series of redshift bins from 0-6, combined with earlier far-infrared estimates, where available, and fitted with a Saunders et al (1990) functional form. The star-formation-rate density as a function of redshift is derived and compared with other estimates. There is reasonable agreement with both infrared and ultraviolet estimates for z < 3, but we find higher star-formation-rate densities than ultraviolet estimates at z = 3-6. Given the considerable uncertainties in the submillimetre estimates, we can not rule out the possibility that the ultraviolet estimates are correct. But the possibility that the ultraviolet estimates have seriously underestimated the contribution of dust-shrouded star-formation can also not be excluded.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا