ﻻ يوجد ملخص باللغة العربية
We show that a properly dc-biased Josephson junction in series with two microwave resonators of different frequencies emits photon pairs in the resonators. By measuring auto- and inter-correlations of the power leaking out of the resonators, we demonstrate two-mode amplitude squeezing below the classical limit. This non-classical microwave light emission is found to be in quantitative agreement with our theoretical predictions, up to an emission rate of 2 billion photon pairs per second.
We study the quantum charge noise and measurement properties of the double Cooper pair resonance point in a superconducting single-electron transistor (SSET) coupled to a Josephson charge qubit. Using a density matrix approach for the coupled system,
We propose a method to perform accurate and fast charge pumping in superconducting nanocircuits. Combining topological properties and quantum control techniques based on shortcuts to adiabaticity, we show that it is theoretically possible to achieve
Parity control of superconducting islands hosting Majorana zero modes (MZMs) is required to operate topological qubits made from proximitized semiconductor nanowires. We, therefore, study parity effects in hybrid InAs-Al single-Cooper-pair transistor
Cooper pair splitters are promising candidates for generating spin-entangled electrons. However, the splitting of Cooper pairs is a random and noisy process, which hinders further synchronized operations on the entangled electrons. To circumvent this
At the interface between a ferromagnetic insulator and a superconductor there is a coupling between the spins of the two materials. We show that when a supercurrent carried by triplet Cooper pairs flows through the superconductor, the coupling induce