ﻻ يوجد ملخص باللغة العربية
Evidence of surface magnetism is now observed on an increasing number of cool stars. The detailed manner by which dynamo-generated magnetic fields giving rise to starspots traverse the convection zone still remains unclear. Some insight into this flux emergence mechanism has been gained by assuming bundles of magnetic field can be represented by idealized thin flux tubes (TFTs). Weber & Browning (2016) have recently investigated how individual flux tubes might evolve in a 0.3 solar-mass M dwarf by effectively embedding TFTs in time-dependent flows representative of a fully convective star. We expand upon this work by initiating flux tubes at various depths in the upper 50-75% of the star in order to sample the differing convective flow pattern and differential rotation across this region. Specifically, we comment on the role of differential rotation and time-varying flows in both the suppression and promotion of the magnetic flux emergence process.
Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not es
Observations reveal that strong solar flares and coronal mass ejections tend to occur in complex active regions characterized by delta-sunspots, spot rotation, sheared polarity inversion lines (PILs), and magnetic flux ropes. Here we report on the fi
Stars of sufficiently low mass are convective throughout their interiors, and so do not possess an internal boundary layer akin to the solar tachocline. Because that interface figures so prominently in many theories of the solar magnetic dynamo, a wi
(abridged) Context: Main-sequence late-type stars with masses less than $0.35 M_odot$ are fully convective. Aims: The goal is to study convection, differential rotation, and dynamos as functions of rotation in fully convective stars. Methods: Three-d
A joint campaign of various space-borne and ground-based observatories, comprising the Japanese Hinode mission (HOP~338, 20,--,30~September 2017), the GREGOR solar telescope, and the textit{Vacuum Tower Telescope} (VTT), investigated numerous targets