ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental certification of millions of genuinely entangled atoms in a solid

105   0   0.0 ( 0 )
 نشر من قبل Florian Fr\\\"owis
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum theory predicts that entanglement can also persist in macroscopic physical systems, albeit difficulties to demonstrate it experimentally remain. Recently, significant progress has been achieved and genuine entanglement between up to 2900 atoms was reported. Here we demonstrate 16 million genuinely entangled atoms in a solid-state quantum memory prepared by the heralded absorption of a single photon. We develop an entanglement witness for quantifying the number of genuinely entangled particles based on the collective effect of directed emission combined with the nonclassical nature of the emitted light. The method is applicable to a wide range of physical systems and is effective even in situations with significant losses. Our results clarify the role of multipartite entanglement in ensemble-based quantum memories as a necessary prerequisite to achieve a high single-photon process fidelity crucial for future quantum networks. On a more fundamental level, our results reveal the robustness of certain classes of multipartite entangled states, contrary to, e.g., Schrodinger-cat states, and that the depth of entanglement can be experimentally certified at unprecedented scales.



قيم البحث

اقرأ أيضاً

Certifying the entanglement of quantum states with Bell inequalities allows one to guarantee the security of quantum information protocols independently of imperfections in the measuring devices. Here we present a similar procedure for witnessing ent angled measurements, which play a central role in many quantum information tasks. Our procedure is termed semi-device-independent, as it uses uncharacterized quantum preparations of fixed Hilbert space dimension. Using a photonic setup, we experimentally certify an entangled measurement using measurement statistics only. We also apply our techniques to certify unentangled but nevertheless inherently quantum measurements.
250 - Andreas Osterloh 2014
I generalize the concept of balancedness to qudits with arbitrary dimension $d$. It is an extension of the concept of balancedness in New J. Phys. {bf 12}, 075025 (2010) [1]. At first, I define maximally entangled states as being the stochastic state s (with local reduced density matrices $id/d$ for a $d$-dimensional local Hilbert space) that are not product states and show that every so-defined maximal genuinely multi-qudit entangled state is balanced. Furthermore, all irreducibly balanced states are genuinely multi-qudit entangled and are locally equivalent with respect to $SL(d)$ transformations (i.e. the local filtering transformations (LFO)) to a maximally entangled state. In particular the concept given here gives the maximal genuinely multi-qudit entangled states for general local Hilbert space dimension $d$. All genuinely multi-qudit entangled states are an element of the partly balanced $SU(d)$-orbits.
We describe the dissociation of a diatomic Feshbach molecule due to a time-varying external magnetic field in a realistic trap and guide setting. An analytic expression for the asymptotic state of the two ultracold atoms is derived, which can serve a s a basis for the analysis of dissociation protocols to generate motionally entangled states. For instance, the gradual dissociation by sequences of magnetic field pulses may delocalize the atoms into macroscopically distinct wave packets, whose motional entanglement can be addressed interferometrically. The established relation between the applied magnetic field pulse and the generated dissociation state reveals that square-shaped magnetic field pulses minimize the momentum spread of the atoms. This is required to control the detrimental influence of dispersion in a recently proposed experiment to perform a Bell test in the motion of the two atoms [C. Gneiting and K. Hornberger, Phys. Rev. Lett. 101, 260503 (2008)].
The periodic changes in physical and chemical properties of the chemical elements is caused by the periodic change of the ionization energies. The ionization energy of each element is constant and this manifests itself in the periodic table. However, we show that the ionization energies can be dramatically changed, when atoms are placed in a photonic crystal consisting of materials with a highly tunable refractive index and voids. The tunability of these materials gives rise to the tunability of the ionization energies over a wide range. This allows one to come beyond the limitations put on by the periodic table on physical and chemical processes, and can open up new horizons in synthesizing exceptional chemical compounds that could be used in pharmaceutical and other medical-related activities.
We describe and implement a method to restore the state of a single qubit, in principle perfectly, after it has partially collapsed. The method resembles the classical Hahn spin-echo, but works on a wider class of relaxation processes, in which the q uantum state partially leaves the computational Hilbert space. It is not guaranteed to work every time, but successful outcomes are heralded. We demonstrate using a single trapped ion better performance from this recovery method than can be obtained employing projection and post-selection alone. The demonstration features a novel qubit implementation that permits both partial collapse and coherent manipulations with high fidelity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا