ترغب بنشر مسار تعليمي؟ اضغط هنا

Early Science with the Large Millimeter Telescope: Detection of dust emission in multiple images of a normal galaxy at $z>4$ lensed by a Frontier Fields cluster

86   0   0.0 ( 0 )
 نشر من قبل Alexandra Pope
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We directly detect dust emission in an optically-detected, multiply-imaged galaxy lensed by the Frontier Fields cluster MACSJ0717.5+3745. We detect two images of the same galaxy at 1.1mm with the AzTEC camera on the Large Millimeter Telescope leaving no ambiguity in the counterpart identification. This galaxy, MACS071_Az9, is at z>4 and the strong lensing model (mu=7.5) allows us to calculate an intrinsic IR luminosity of 9.7e10 Lsun and an obscured star formation rate of 14.6 +/- 4.5 Msun/yr. The unobscured star formation rate from the UV is only 4.1 +/- 0.3 Msun/yr which means the total star formation rate (18.7 +/- 4.5 Msun/yr) is dominated (75-80%) by the obscured component. With an intrinsic stellar mass of only 6.9e9Msun, MACS0717_Az9 is one of only a handful of z>4 galaxies at these lower masses that is detected in dust emission. This galaxy lies close to the estimated star formation sequence at this epoch. However, it does not lie on the dust obscuration relation (IRX-beta) for local starburst galaxies and is instead consistent with the Small Magellanic Cloud (SMC) attenuation law. This remarkable lower mass galaxy showing signs of both low metallicity and high dust content may challenge our picture of dust production in the early Universe.



قيم البحث

اقرأ أيضاً

We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the SCUBA-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z=2.040, 3.252 and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (J_up=2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H_2 gas mass of the full sample is (2.0 +- 0.2) x 10^11 M_sun/mu, and the mean dust mass is (2.0+-0.2) x 10^9 M_sun/mu, where mu=2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of delta_GDR=55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L_CO - L_FIR correlation observed for local luminous and ultraluminous infrared galaxies to higher FIR and CO luminosities.
We present constraints on the dust continuum flux and inferred gas content of a gravitationally lensed massive quiescent galaxy at $z$=1.883$pm$0.001 using AzTEC 1.1mm imaging with the Large Millimeter Telescope. MRG-S0851 appears to be a prototypica l massive compact quiescent galaxy, but has evidence that it experienced a centrally concentrated rejuvenation event in the last 100 Myr (see Akhshik et al. 2020). This galaxy is undetected in the AzTEC image but we calculate an upper limit on the millimeter flux and use this to estimate the H$_2$ mass limit via an empirically calibrated relation that assumes a constant molecular gas-to-dust ratio of 150. We constrain the 3$sigma$ upper limit of the H$_2$ fraction from the dust continuum in MRG-S0851 to be ${M_{H_2}/M_{star}}$ $leq$ 6.8%. MRG-S0851 has a low gas fraction limit with a moderately low sSFR owing to the recent rejuvenation episode, which together results in a relatively short depletion time of $<$0.6 Gyr if no further H$_2$ gas is accreted. Empirical and analytical models both predict that we should have detected molecular gas in MRG-S0851, especially given the rejuvenation episode; this suggests that cold gas and/or dust is rapidly depleted in at least some early quiescent galaxies.
We present 8.5 arcsec resolution 1.1mm continuum imaging and CO spectroscopic redshift measurements of eight extremely bright submillimetre galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescopes AzTEC and Redshift Search Receiver instruments. We compiled a candidate list of high redshift galaxies by cross-correlating the Planck Surveyor missions highest frequency channel (857 GHz, FWHM = 4.5 arcmin) with the archival Herschel Spectral and Photometric Imaging Receiver (SPIRE) imaging data, and requiring the presence of a unique, single Herschel counterpart within the 150 arcsec search radius of the Planck source positions with 350 micron flux density larger than 100 mJy, excluding known blazars and foreground galaxies. All eight candidate objects observed are detected in 1.1mm continuum by AzTEC bolometer camera, and at least one CO line is detected in all cases with a spectroscopic redshift between 1.3 < z(CO) < 3.3. Their infrared spectral energy distributions mapped using the Herschel and AzTEC photometry are consistent with cold dust emission with characteristic temperature between $T_d$ = 43 K and 84 K. With apparent infrared luminosity of up to L(IR) = $3times10^{14} mu^{-1} L_odot$, they are some of the most luminous galaxies ever found (with yet unknown gravitational magnification factor $mu$). The analysis of their spectral energy distributions (SEDs) suggests that star formation is powering the bulk of their extremely large IR luminosities. Derived molecular gas masses of $M_{H2}=(0.6-7.8)times 10^{11} M_odot$ (for $mu$~10) also make them some of the most gas-rich high redshift galaxies ever detected.
We report an early science discovery of the CO(1-0) emission line in the collisional ring galaxy, VII Zw466, using the Redshift Search Receiver instrument on the Large Millimeter Telescope Alfonso Serrano.The apparent molecular-to-atomic gas ratio ei ther places the ISM of VII Zw466 in the HI-dominated regime or implies a large quantity of CO-dark molecular gas, given its high star formation rate. The molecular gas densities and star formation rate densities of VII Zw466 are consistent with the standard Kennicutt-Schmidt star formation law even though we find this galaxy to be H2-deficient. The choice of CO-to-H2 conversion factors cannot explain the apparent H2 deficiency in its entirety. Hence, we find that the collisional ring galaxy, VII Zw466, is either largely deficient in both H2 and HI or contains a large mass of CO-dark gas. A low molecular gas fraction could be due to the enhancement of feedback processes from previous episodes of star formation as a result of the star-forming ISM being confined to the ring. We conclude that collisional ring galaxy formation is an extreme form of galaxy interaction that triggers a strong galactic-wide burst of star formation that may provide immediate negative feedback towards subsequent episodes of star formation---resulting in a short-lived star formation history or, at least, the appearance of a molecular gas deficit.
87 - Ryan Cybulski 2015
An understanding of the mass build-up in galaxies over time necessitates tracing the evolution of cold gas (molecular and atomic) in galaxies. To that end, we have conducted a pilot study called CO Observations with the LMT of the Blind Ultra-Deep H I Environment Survey (COOL BUDHIES). We have observed 23 galaxies in and around the two clusters Abell 2192 (z = 0.188) and Abell 963 (z = 0.206), where 12 are cluster members and 11 are slightly in the foreground or background, using about 28 total hours on the Redshift Search Receiver (RSR) on the Large Millimeter Telescope (LMT) to measure the $^{12}$CO J = 1 --> 0 emission line and obtain molecular gas masses. These new observations provide a unique opportunity to probe both the molecular and atomic components of galaxies as a function of environment beyond the local Universe. For our sample of 23 galaxies, nine have reliable detections (S/N$geq$3.6) of the $^{12}$CO line, and another six have marginal detections (2.0 < S/N < 3.6). For the remaining eight targets we can place upper limits on molecular gas masses roughly between $10^9$ and $10^{10} M_odot$. Comparing our results to other studies of molecular gas, we find that our sample is significantly more abundant in molecular gas overall, when compared to the stellar and the atomic gas component, and our median molecular gas fraction lies about $1sigma$ above the upper limits of proposed redshift evolution in earlier studies. We discuss possible reasons for this discrepancy, with the most likely conclusion being target selection and Eddington bias.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا