ﻻ يوجد ملخص باللغة العربية
This review is devoted to the detailed consideration of the universal statistical properties of one-dimensional directed polymers in a random potential. In terms of the replica Bethe ansatz technique we derive several exact results for different types of the free energy probability distribution functions. In the second part of the review we discuss the problems which are still waiting for their solutions. Several mathematical appendices in the ending part of the review contain various technical details of the performed calculations.
Zero temperature limit in (1+1) directed polymers with finite range correlated random potential is studied. In terms of the standard replica technique it is demonstrated that in this limit the considered system reveals the one-step replica symmetry b
The asymptotic analytic expression for the two-time free energy distribution function in (1+1) random directed polymers is derived in the limit when the two times are close to each other
In this paper in terms of the replica method we consider the high temperature limit of (2+1) directed polymers in a random potential and propose an approach which allows to compute the scaling exponent $theta$ of the free energy fluctuations as well
Using the replica method, we develop an analytical approach to compute the characteristic function for the probability $mathcal{P}_N(K,lambda)$ that a large $N times N$ adjacency matrix of sparse random graphs has $K$ eigenvalues below a threshold $l
The joint statistical properties of two free energies computed at two different temperatures in {it the same sample} of $(1+1)$ directed polymers is studied in terms of the replica technique. The scaling dependence of the reduced free energies differ