We present a new approach to Lorentz-Shimogaki and Arazy-Cwikel Theorems which covers all range of $p,qin (0,infty]$ for function spaces and sequence spaces. As a byproduct, we solve a conjecture of Levitina and the last two authors.
We revisit Matui-Satos notion of property (SI) for C*-algebras and C*-dynamics. More specifically, we generalize the known framework to the case of C*-algebras with possibly unbounded traces. The novelty of this approach lies in the equivariant conte
xt, where none of the previous work allows one to (directly) apply such methods to actions of amenable groups on highly non-unital C*-algebras, in particular to establish equivariant Jiang-Su stability. Our main result is an extension of an observation by Sato: For any countable amenable group $Gamma$ and any non-elementary separable simple nuclear C*-algebra $A$ with strict comparison, every $Gamma$-action on $A$ has equivariant property (SI). A more general statement involving relative property (SI) for inclusions into ultraproducts is proved as well. As a consequence we show that if $A$ also has finitely many rays of extremal traces, then every $Gamma$-action on $A$ is equivariantly Jiang-Su stable. We moreover provide applications of the main result to the context of strongly outer actions, such as a generalization of Nawatas classification of strongly outer automorphisms on the (stabilized) Razak-Jacelon algebra.
The parabolic algebra A_p is the weakly closed algebra on L^2(R) generated by the unitary semigroup of right translations and the unitary semigroup of multiplication by the analytic exponential functions e^{ilambda x}, lambda geq 0. This algebra is r
eflexive with an invariant subspace lattice, Lat A_p, which is naturally homeomorphic to the unit disc (Katavolos and Power, 1997). This identification is used here to classify strongly irreducible isometric representations of the partial Weyl commutation relations. The notion of a synthetic subspace lattice is extended from commutative to noncommutative lattices and it is shown that Lat A_p is nonsynthetic relative to the maximal abelian multiplication subalgebra of A_p. Also, operator algebras derived from isometric representations of A_p and from compact perturbations are defined and determined.
A triangular limit algebra A is isometrically isomorphic to the tensor algebra of a C*-correspondence if and only if its fundamental relation R(A) is a tree admitting a $Z^+_0$-valued continuous and coherent cocycle. For triangular limit algebras whi
ch are isomorphic to tensor algebras, we give a very concrete description for their defining C*-correspondence and we show that it forms a complete invariant for isometric isomorphisms between such algebras. A related class of operator algebras is also classified using a variant of the Aho-Hopcroft-Ullman algorithm from computer aided graph theory.
In this paper, we establish the full $L_p$ boundedness of noncommutative Bochner-Riesz means on two-dimensional quantum tori, which completely resolves an open problem raised in cite{CXY13} in the sense of the $L_p$ convergence for two dimensions. Th
e main ingredients are sharper estimates of noncommutative Kakeya maximal functions and geometric estimates in the plain. We make the most of noncommutative theories of maximal/square functions, together with microlocal decompositions in both proofs of sharper estimates of Kakeya maximal functions and Bochner-Riesz means. We point out that even geometric estimates in the plain are different from that in the commutative case.