ﻻ يوجد ملخص باللغة العربية
Self-consistent treatment of cosmological structure formation and expansion within the context of classical general relativity may lead to extra expansion above that expected in a structureless universe. We argue that in comparison to an early-epoch, extrapolated Einstein-de Sitter model, about 10-15% extra expansion is sufficient at the present to render superfluous the dark energy 68% contribution to the energy density budget, and that this is observationally realistic.
This paper makes two points. First, we show that the line-of-sight solution to cosmic microwave anisotropies in Fourier space, even though formally defined for arbitrarily large wavelengths, leads to position-space solutions which only depend on the
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instabil
We present a short (and necessarily incomplete) review of the evidence for the accelerated expansion of the Universe. The most direct probe of acceleration relies on the detailed study of supernovae (SN) of type Ia. Assuming that these are standardiz
We study how to set the initial evolution of general cosmological fluctuations at second order, after neutrino decoupling. We compute approximate initial solutions for the transfer functions of all the relevant cosmological variables sourced by quadr
Neural language models trained with a predictive or masked objective have proven successful at capturing short and long distance syntactic dependencies. Here, we focus on verb argument structure in German, which has the interesting property that verb